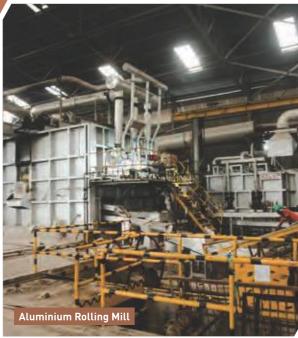


COMPANY PROFILE



CONTENTS

About Us	07
About MD	10
Team	11
Mission & Vision	13
Production Facilities	14
Product Range	15
Approvals	19
Verticals & Clientele	22
EPC Overview	23
Past & Present Projects	24
Group Financial Performance	25
Awards & Recognition	26
Product Details	30
Do's & Don'ts	106
Test of Cable	112

ABOUT US

LASER POWER & INFRA PVT LTD. (LPIPL) is the largest Cable and Conductor Manufacturer & Exporter in Eastern India while boasting of a strong foothold in EPC projects pan-India.

A pioneer in world-class Power Transmission & Distribution products for more than 30 years with proven expertise in large-scale Electrification Projects across the country, **LASER POWER & INFRA PVT LTD.** manufactures and markets a wide range of Wires, Cables & Conductors with key products being HT / LT Cables, Aerial Bunched Cables, Power Cables, Control Cables, Instrumental Cables, Solar Cables, Flexible Cables, Flexible / Single / Multi-core Cables, Concentric Cables, Communication Cables and others, including Submersible Flat and Round Cables, Overhead/Covered Conductors, Railway Signaling and Power Cable.

From a one-man show in 1988, **LPIPL** today employs a workforce exceeding 4000, on direct and indirect payrolls. We are not merely a commercial house; rather we are a proud family where every member plays a pivotal role in India's development by providing infrastructural support to industries and generating employment opportunities, which is imperative in the present socioeconomic scenario.

With great emphasis on manufacturing excellence, technological advancement and customer satisfaction, our in-house process control and quality assurance experts ensure that every customer receives high quality products. Equipped with state-of-the-art machinery, hardware, software and infrastructure, we are a leading name with a dominant position in the industry. **LPIPL** currently has 3 manufacturing facilities covering almost 700,000 sq.ft. area in the state of West Bengal.

We are committed towards continuous growth of the organization and our country's power infrastructure, empowering a better, more connected future!

LASER POWER stands by every stakeholder with heartfelt gratitude for being part of this success story.

History:

A Legacy That Dreams Power Infrastructure

Our journey had humble beginnings, manufacturing reliable and cost-effective LT Power Cables and Conductors out of a small unit, which, our most respected visionary Chairman and Founder, Mr. P. D. Goel, built from scratch having gauged the need and potential of the power sector in the country in the early 80's.

His Son and present Managing Director, Mr. Deepak Goel with his unparalleled vision and unputdownable zeal, the setup witnessed exponential growth and ultimately LASER CABLES PVT. LTD. came into being in the year 1988.

The first year's turnover was around Rs.10 lacs. Hard work and dedication helped Mr. Goel climb the ladder of success quickly. In the year 2000, he shifted his unit to Jungalpur, covering an area of around 1,00,000 sq.ft.

In the 13th year since inception, annual turnover clocked Rs. 10 Crores. With the rapid demand for economic growth, he multiplied his manufacturing capacity and made a strategic move to

ABOUT US

Poly Park, with an area of almost 2,00,000 sq.ft. in the year 2015.

That year, the company's turnover was around Rs.150 Crores, which was almost 15 times over a period of 15 years!

Today, under his supervision, the company has achieved a turnover of Rs.1500 Crores!

In 2015, his two sons, Mr. Devesh Goel and Mr. Akshat Goel, joined the company and in a short span of time, have become an integral part of our success story. Their new zeal, innovative approach and technology-driven insights prepared us for the challenges of tomorrow.

Under the young and dynamic, next-gen leadership, **LPIPL** diversified its business, foraying into engineering, procurement, and construction or "EPC", which includes design, engineering, supply, erection and commissioning of power distribution and rural electrification projects. **LPIPL** is also engaged in solar projects under turnkey contract basis.

We also added 'Infrastructure' to our portfolio in February 2016 and finally became: LASER POWER & INFRA PVT LTD.

Boasting a covered manufacturing area of 4.55 lac sq.ft. and uncovered area of 2 lac sq.ft., the large scale growth is a direct outcome of diversification under the ambit of our dynamic Managing Director, Mr. Deepak Goel, who initiated addition of various cable and conductor verticals and expanded operations in multiple channels, including EPC contracts. Mr. Devesh Goel and Mr. Akshat Goel play vital roles with their expertise in production and marketing.

Since inception, we have played a key role in nation-building, designing, testing and developing products to meet the growing domestic demand of Cables, Conductors and Aerial Bunched Cables and scaling up over the years to cater to market globally.

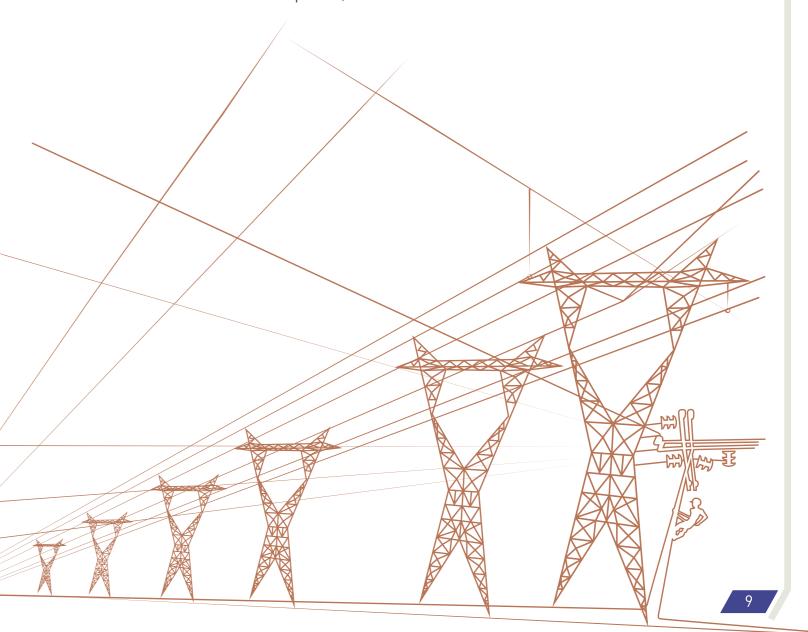
After setting up the Integrated, State-of-the-Art Manufacturing Plant at Dhulagarh in 2000, we were awarded ISO 9001:2000 Certification in 2003. In 2007, we added high-performance and durable 11 kV XLPE Cable to our product range.

Riding on sound financial capability, dynamism of our Management percolating throughout the organization, planned vision and invaluable support from our customers, **LASER POWER INFRA PVT LTD.** has catapulted itself to a leading position in the industry from scratch within an unbelievable time span.

ABOUT US

Business:

Core Competency to Excel


Excelling is in our DNA. Under a dynamic management with clear vision, we have attained a leadership position by virtue of our cost-effectiveness, reliability and quality.

In addition to manufacturing and marketing LT/Power/Control, Aerial Bunched & HT Cables up to 66 kV, we also specialise in ACSR/AAAC/AAC Conductors featuring higher strength-to-weight ratio and improved corrosion-resistance for all Industry Verticals.

With concentrated investment in R & D and Infrastructure over the years, we ensure Technical superiority and not just compliance while meeting evolved customer requirements and exceeding expectations.

Our own PROPERZI Aluminium Rod Rolling Mill in Dhulagrh facility manufactures Aluminium Rods from Ingots ensuring stringent Quality Control and Cost Competitiveness.

The core team comprising Industry veterans has decades of experience, hailing from domestic and international Cable Companies, EPCs and allied industries.

About Our MANAGING DIRECTOR - FOUNDER MR. DEEPAK GOEL

Mr. Deepak Goel is a first-generation Entrepreneur, embarking on his empowering journey at the tender age of 18 with a small shop on Ezra Street, Kolkata's famous electrical market. His long-term vision and in-depth knowledge of Electrical Goods inspired him to start large-scale manufacturing of Cables and Conductors.

In 1988, he formed Laser Cable Pvt. Ltd. and commenced operations with a manpower of just 10 in Patipukur area of Dum Dum, Kolkata. His dedication and hard work transformed the promising company into a reputed player in the Cable Industry.

Mr. Goel then shifted his manufacturing unit to Jangalpur Industrial Area, Howrah, in the year 2000, upgrading from a modest 10,000

sq.ft. to an incredible 185,000 sq.ft. After tasting success in his field of expertise involving cables and conductors, Mr. Goel moved ahead and undertook more challenging turnkey projects in Rural Electrification.

He successfully executed projects under Government schemes worth ₹ 2,000 Crores approximately. In the year 2016, it became imperative to shift the manufacturing facility to Dhulagarh, with operations spread across 700,000 sq.ft. It was the same year when Mr. Goel also changed his company's name to what it is now - Laser Power & Infra Pvt Ltd. **(LPIPL)**

Today, **LPIPL** generates a revenue of ₹1500 Crores annually, employing 1800 personnel throughout India. It is a front runner in the manufacture of a wide range of Cables and Conductors in India while exporting to several countries across the globe.

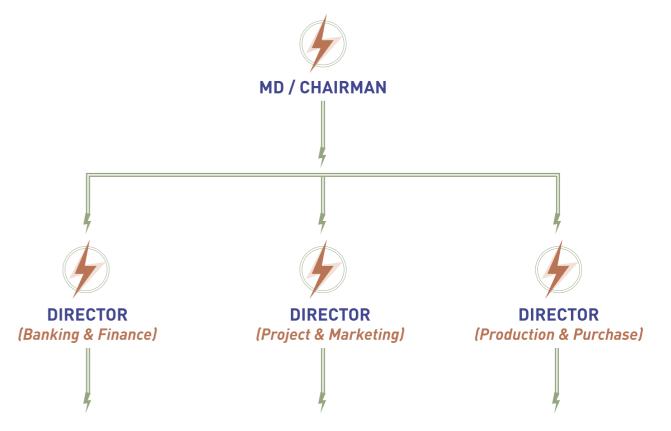
Under the able leadership of Mr. Goel, **LPIPL** has become a name synonymous with turnkey rural electrification projects over the last three decades, with several state DISCOMS in its clientele.

He is not only responsible for **LPIPL**'s success story, establishing it as the market leader, but is also the reason behind the development of the Electrical Cable Industry in Eastern India.

As the guiding light for all of us at **LPIPL**, he continues to be a pillar of strength and inspire us with his indomitable will to succeed, the perseverance to weather all adversities and champion the cause of sustainability enroute to empowering India and striving for energy efficiency in the years to come.

TEAM

Manpower Matters Most -


LASER POWER has been built from the ground up by people – they are at the core of everything we do and stand for today – whom we nurture and shape into tomorrow's achievers.

We invest heavily on Manpower recruitment & development, ensuring we equip them with the resources they need to perform optimally. Experienced, skilled and technically competent personnel find themselves deployed at all levels and across departments such as Design, R&D, Projects, Manufacturing, Testing, Quality Control and Marketing.

We have adopted an ERP based business model for ease of Control, Monitoring and Maintaining a system throughout all levels and departments within the organization. It acts as a versatile tool, keeping tab of the FG Stock, RM Stock, Production Level and the HR system to name a few. **LPIPL** believes in **SAFETY FIRST SAFETY ALWAYS** and ensures it is adhered to at every stage with frequent training organised across all employee-levels.

An experienced Marketing Team looks after Product Promotion and caters to the requirements of our honourable customers. As a coordinating agency between the customer and production, they work in synergy with the Design team to get the right product delivered. Our marketing network is spread across all the metros and non-metros as well as other major cities with a dedicated Export Team.

The highly experienced and dynamic Engineers of our EPC division are undertaking planning, engineering, drawing & designing, procurement, execution and commissioning of thousands of kilometres of Power Lines.

CEO PRESIDENT PRESIDENT (Production) (Mktg) (Project) GM GM **AGM** (Accounts) **DGM DGM MANAGER AGM AGM SR. MANAGER DGM DGM MANAGER MANAGER** SR. MANAGER SR. MANAGER

MANAGER

MISSION & VISION

As an agile and growth-centric organisation, **LPIPL** is committed to maintaining an ideal balance between scaling new heights and exploring uncharted avenues with social responsibility and inclusiveness that propel us towards our business objectives while ensuring we continue to care for issues that matter to us, both in the short and long term.

Mission ____

- To make India power-dependent in the next 5 years
- To lead sustainability and conservation of resources with emphasis on Wind, Solar & Renewable Energy
- To increase investment both in terms of manpower and equipment so as to be ready for the challenges and opportunities of the next decade starting 2021
- To diversify into new verticals and categories to align LPIPL with growth projections
- To consistently allocate financial resources and time towards CSR, making social responsibility more personal and not merely a corporate mandate

Vision _

- To be the leading Power Infrastructure Company in the world
- To champion the Make in India philosophy and cater to global demand
- To expand our Geography and foray into new markets
- To make Technology a way of life at LPIPL, aiming at 100% automation under Human supervision

12

MANAGER

PRODUCTION FACILITIES

Sl. No.	List of Equipment	No.
01.	ANNEALER	4
02.	ARMOURING	2
03.	BELLING	2
04.	BOILER	2
05.	BUNCHER	5
06.	CCV LINE	1
07.	AUTO COILING	2
08.	DRUM TWISTER	9
09.	DST	4
10.	EXTRUDER	49
11.	FINE WIRE DRAWING	8
12.	GI REWINDING	10
13.	MULTI STRAND	9
14.	PULVERIZER	1
15.	PVC COMPOUNDING	1
16.	QUADDING MACHINE	1

Sl. No.	List of Equipment	No.
17.	REWINDING	18
18.	ALUMINIUM ROLLING MILL	1
19.	SKIP MACHINE	11
20.	TABULAR	2
21.	TAPING MACHINE	8
22.	TESTING LAB	7
23.	WIRE DRAWING	13
24.	AIR COOLED CHILLER	3
25.	COMPRESSOR	16
26.	COOLING TOWER	17
27.	DG SET GENERATOR	10
28.	WATER COOLED CHILLER	2
29.	CRANE	18
30.	FORKLIFT	17
31	HYDRA	2
32.	LIFT	8

Production Capacity

Plant Area

Covered- 4.55 Lac sq.ft.
Uncovered- 2 Lac sq.ft.

Annual Production Capacity

LT XLPE Cables: **15,000 Kms.** PVC Cables: **60,000 Kms.**

LT Aerial Bunched Cables: 50,000 Kms.

AAC, AAAC, ACSR Conductors: 1,00,000 Kms.
HT Power & Aerial Bunched Cables: 2000 Kms.

Quad Cables: 3000 Kms.

PRODUCT RANGE

LT Power Cables: Standards IS - 7098 (Part-1)

LT Power Cable consists of four major components: conductors, insulation, metal armour and protective jacket. The makeup of individual cables varies depending upon the application.

LASER LT Power Cables with PVC or XLPE insulation voltage conform to various Indian and International Standards. XLPE insulated cables are cross linked, mechanically strong and offer better resistance against stress cracking and ageing caused by hot air.

LASER FR-LSH cables are manufactured using special compounds for sheathing and are resistant to fire.

Control Cables: Standards IS - 1554 (Part-I), IS - 7098 (Part I)

Control Cable is an amalgamation of conductors, insulation, metal armour and protective jacket. LASER Control Cables are multi-conductor cables used in automation and instrumentation. These cables are typically shielded with a foil shield, braid shield or combination of the two. LASER takes complete care of the flexibility of the conductor while manufacturing it.

HT Power Cables: Standards IS - 7098 (Part-II), IEC - 60502, BS - 6622.

XLPE Insulated HT Power Cables up to 66 kV are designed to comply with a standard set of Indian and International specifications. XLPE insulated cross-linked poly-ethylene insulated cables offer extraordinary strength to withstand high voltages and are used as HT (High Tension) Cables for underground voltage transmission systems. Salient features of these cables include better electrical, mechanical and thermal properties along with the merit of being lightweight.

FR-LSH outer sheath is available on request.

PRODUCT RANGE

Railway Signaling Cable: Standard as per RDS0 -

Being one of the largest Signaling Cable suppliers to the Indian Railways. our cables contribute significantly to the safety of passengers and cargo.

LASER Railway Signaling Cables manufactured with stringent RDSO specifications play an essential role in smooth running and connectivity of the railway network, ensuring transmission of signals and continuous power supply to the railway signaling systems.

QUAD Cables: Standard as per RDSO ____

LASER QUAD Cables are manufactured aligned with RDSO specifications. Polythene Sheathed Jelly-filled Cable with Ploy-Al moisture barrier is used in providing telephone connections. Jelly-filled quad cables are used for special purposes like control circuits, axle counters etc. in RE and Non-RE areas.

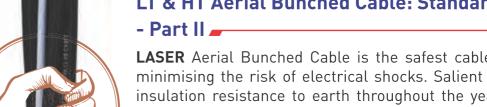
LASER AAC (Aluminium Alloy Conductor) Conductor is designed and developed using aluminium, magnesium and silicon. These Alloys have high electrical conductivity and add to its improved mechanical properties and sag & tension.

PVC Insulated Copper Cable: ZHFR, HRFR, FR-LSH: Standard IS 694

LASER PVC-insulated Single and Multi-core Copper Flexible Cables are designed and manufactured for low-voltage applications. This cable finds usage in Panel Control Wiring, Industrial and Commercial Building Wiring, Home Appliance Cords, Battery Cable and 3-Core Flat Cable for submersible pumps.

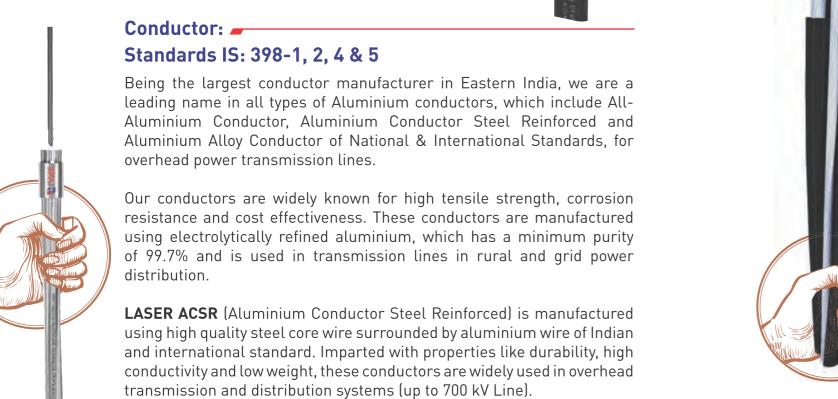
Mankind and environmental safety being our utmost concern, all flexible cables are heat-resistant, fire-retardant and emit considerable low smoke.

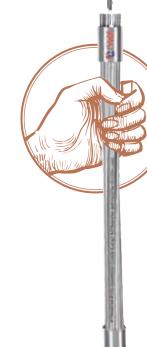
Aluminium Wire Rod and Aluminium-Alloy Wire Rods ___


LASER Al Rod is manufactured in-house with a production capacity of 100 tons per day. Chemical compositions are checked using a Spectral machine so as to achieve the desired specifications of Al & Alloy Rods.

Aluminium Wire Rods of 9.5 mm in EC and Alloy Grade, Aluminium Alloy Wire Rods (6201 Alloy Rod in T-4 & M temper- online solutionized) and Aluminium Alloy 6061.

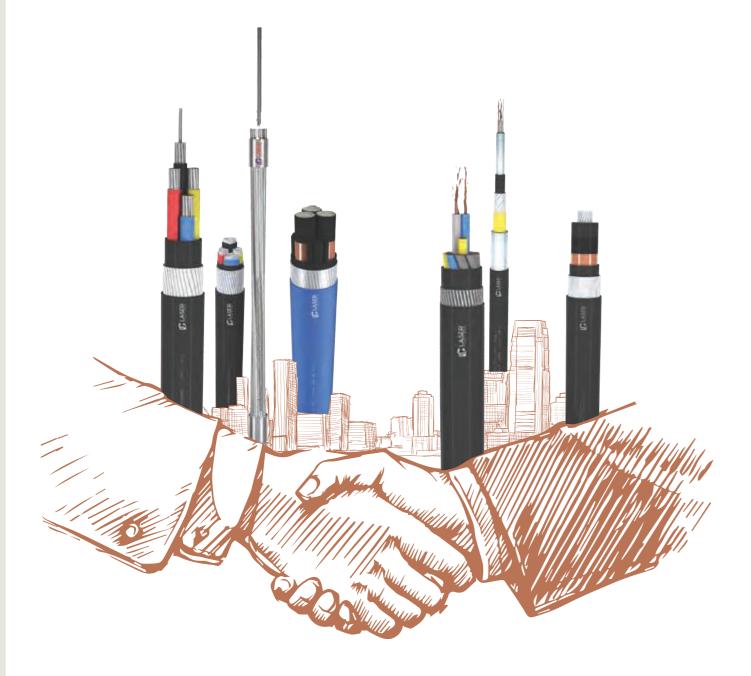
LT & HT Aerial Bunched Cable: Standard IS-14255, 7098


LASER Aerial Bunched Cable is the safest cable for inhabited areas. minimising the risk of electrical shocks. Salient features include high insulation resistance to earth throughout the year, negligible leakage currents, low losses and anti-theft properties.


It is dubbed as a great product for Overhead Power Distribution, which provides higher safety and reliability in comparison to bare conductor overhead distribution systems.

Covered Conductor: Standard EN 50297- Part I

LASER Medium Voltage Covered Conductor is a safe and economical choice for HT overhead conductor. Covered conductor has a casing of insulated material(s) that acts as a protection against other covered conductors it might accidentally come in contact with and grounded parts such as tree branches, etc. In comparison to insulated conductors, this covering is known for its reduced thickness but is sufficient to withstand the phase-to-earth voltage temporarily.



PRODUCT RANGE

Conductor: Longitudinally water-tight stranded All-Aluminium Alloy (AAAC) or Aluminium Conductor Steel Reinforced (ACSR).

Conductor Screen: Water swellable semi-conducting tape (if required) and extruded semi-conducting compound; Inner Insulation: XLPE

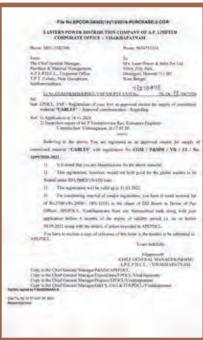
Outer insulation: UV protected and anti-tracking black coloured XLPE or HDPE

APPROVALS

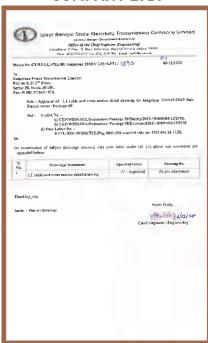
ETHIOPIAN ELECTRIC UTILITY

ENERGY DEVELOPMENT CORPORATION LTD.

BHARAT HEAVY ELECTRICALS LTD.


WATER AND POWER CONSULTANCY SERVICES LTD.

BHARAT STATE POWER TRANSMISSION COMPANY LTD., PATNA


EASTERN POWER DISTRIBUTION COMPANY OF A.P. LTD.

APPROVALS

WEST BENGAL STATE ELECTRICITY TRANSMISSION COMPANY LTD.

EASTERN POWER DISTRIBUTION COMPANY OF A.P. LTD.

STEEL AUTHORITY OF INDIA LTD.

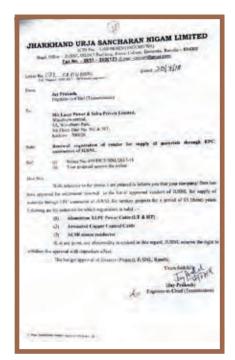
WEST BENGAL STATE ELECTRICITY DISTRIBUTION COMPANY LTD.

DAMODAR VALLEY CORPORATION

DAMODAR VALLEY CORPORATION

ELECTRICITY DEPARTM RURAL ELECTRICATI DVC TOWERS (9 ¹⁴ , FLOVIP ROAD, KOLKATA - 1	ON PROJECT	121 847	
Ref No. EDGON/CE/REP/SH/HZB/WH	36/9		lates, Orisber 24, 1090
Tei M/s Lacing & Touthro Elestradi 71, Park Street, P B No. 1901G, Kinsi, i Krikera - 760 036.	ш.м.оку	Brogs	novi, enese
Sub : Noral Electrification W. Package: 978 - Sub-ress	ieli is Mazanti Sor apprevel (u	ag desiries of that OT and LT A in Circ	young
Buf J. LOA No. EXCENT/CE/IN E. Your No. LTCL/900000 6 Year No. LTCL/900000	EP/H/HZB/S-2 TIAC/INS/201	601 at 14,03,04. H-117 at 02,04.00	
Deer Sir.			
M/s liner Cables Pvi. Limited, Kallan- manifecture and reguly of LLIX and L 2004s to the Contract documents to discussions in this regard. The armiting of your proposal are be- pressioned them from the told weather.	1KV grade Aft. the subject	ories anthrong prior and mose	n de iperfortine la guin investigation
The second secon	Track of the	-	_
Time (etails GE 11KV S-ph (2x35+1x70) AE code GZ 11KV Z-ph (2x35+1x70) AE code GZ 11KV Z-ph (2x35+1x70) AE code GZ 11KV 3-ph (3x16+1x25) AE code GE 1.1KV 3-ph (1x25+1x25) AE code	30 A form % 311 46 41	Name of Yealor M/S CASER CAMES INC UNITED	Address 307, Seedla Centre 3rt Flace, 4A, Follock Street, Kollock - 7800811, Tel. 1853-12157591
This approval is subject to the sumaining rubbin, nearphrolidy drawn from first lot. The approved sub-ventiles is as masse of	officed for June Annuality of the	ertinu in HABL are arminati in per este	ting of each citing of A
deficiency is conveyed as may stage, DVC This approval, however, done per relies design & specification or well by wearing	N MORE STREET	reconnected from an	orthina discountrible de un
Yours Stability, State of the Cooks (Charles Vagineer)			
OL 1 The Chief Kagressov, REP, 1997, Au OC 1 The Superioresiding Sagrouer, RE	ercht. IF, DVC, Hessen	ni.	

APPROVALS


POWER GRID CORPORATION OF INDIA LTD.

POWER GRID CORPORATION OF INDIA LTD.

W POWERCAD	
विनिर्माण गुणवत्ता योजना अनुमोदन वैध	ता विस्तार/ MQP APPROVAL VALIDITY EXTENSION
C/QA&VMQP/LASER/LT_CABLE	दिनांक: 17.11.2020
नेर्माता का नाम	M/s Laser Power & Infra Pvt Ltd, Howrah
lame of Manufacturer	
नेमोता का पता iddress of Manufacturer	NH-6, Poly park, Dhulagori, Howrah (Unit II)
नेमीता कोड Nanufacturer Code	300000916
ास और संपर्क विवरण	
lame & Contact details	Sh. Sunil Singh, Mb: 0 9999842842
ढ का नाम & गणवत्ता योजना सं.	CCL211 Rev 00 for 1.1KV grade PVC Control Cable (Std
tem Name & MQP no.	MQP), PCL211 Rev 00 for 1.1KV grade PVC Power Cable (Std MQP) and ABL 211 Rev 00 for AB Cable
रेक्ते अनुमोदन का संदर्भ	Email dtd. 19.11.2017
revious approval letter ref. No. & date ਜ਼ਰੂਤ ਸੰਤਮੀ ਰਿਫ਼ਤਗ	Your request email dtd. 05.11.2020 & 13.11.2020
ommunication reference details	Your request email dtd. 05.11.2020 & 13.11.2020
	12 11 2023
falldity extended for a period up to this MQP shall be read in conjunction with lata Sheets/ GTP/ test procedures, relevan hall ensure that the above documents are without delay. Please note that further app	is the contract specific technical specification / approved drawing/ t IEC/IS standards and project specific type tests. Manufacturer available at the works so that proper inspection is carried out roval shall be considered based upon performance, quality, and
utat Sheerd GTPV iest procedures, release build ensure that the above document servicitions delay. Please note that further appropries during this approval period. Man should come at least 1 month before expleneitioned approval heter remain unchanges while on the subject, we wish to clarify difference to this MQP at your works. In surameter violation and if any problem is mecase our involvement by way of addition.	the context specific technical specification I approved datasation and SECSN analysis and apport specific type regy. Meadactions a SECSN analysis and service to the proper specific is cartied out mouth that the considered based upon performance, quality, and we considered based upon performance, quality, and ye this approval latter, All other classes mentioned in above the context of the considered based upon performance, quality, and the process inspective and stall continues for above tests in case of sections and repeated observations of process/percent case of sections and repeated observations of process/percent.
Tailedity sended for a period up to this MQP shall be read in conjunction will than this Sheetic GPI by sep procedures, relevant half ensure that the above documents are thinten delay. Please one that further appropriet chaining this approval period. Man mentioned approval enter remain unchange while on the subject, we wish to clarify difference to this MQP at your works. In armateris violation and drap problem is consistent of the process of the property of the process of the process of the process of the process of process of proces	the context specific technical specification I approved datasation and SECSN analysis and apport specific type regy. Meadactions a SECSN analysis and service to the proper specific is cartied out mouth that the considered based upon performance, quality, and we considered based upon performance, quality, and ye this approval latter, All other classes mentioned in above the context of the considered based upon performance, quality, and the process inspective and stall continues for above tests in case of sections and repeated observations of process/percent case of sections and repeated observations of process/percent.
allelity extended for a period up to his MQP shall be read in conjunction with last MQP shall be read in conjunction with last MQP shall be shall be shall be shall be inhoused GPP the procedure, relevant inhoused the properties of the shall be shall be proposed to the shall be shall be shall be shall be proposed by the shall be provided to the shall be shall be s	the context specific technical specification I approved datasing the SISOS analysis and appear specific type eggs. Moulement 18 ISOS analysis and appear project goods type eggs. Moulement 18 ISOS analysis are the work of the proper specification is carried and the considered based upon performance, quality, and the considered based upon performance, quality, and yet this approval letter. All other clauses neutrinos in above that process inspections and regarded substructions of processiperceast and staff continues for above teen in case of sections and regarded substructions of processiperceast and appeared and a substruction of processiperceast and appeared and appeared to the context of the context o
Tailaffly extended for a period up to this MQP shall be read in conjunction with this Sheeted GPI by persondents, relevant substantial production of the conjunction without delay. Please note that further appropries change this personal period. Mean hould come at least 1 month before explain- mental production of the conjunction of the conjunc- tivities of the conjunction of the conjunction of the conjunc- tivities of the conjunction of the conjunction of the conjunc- tivities of the conjunction of the conjunction of the conjunc- tivities of the conjunction of the conjunction of the conjunc- tivities of the conjunction of the conjunction of the conjunc- tivities of the conjunction of the conjunction of the conjunc- tivities of the conjunction of the conjunction of the conjunc- tivities of the conjunction of the conjunction of the conjunc- tivities of the conjunction of the conjunction of the conjunc- tivities of the conjunction of the conjunction of the conjunc- tivities of the conjunction of the conjunction of the conjunc- tivities of the conjunction of the conjunction of the conjunction of the conjunc- tion of the conjunction of the conjunction of the conjunc- tion of the conjunction of the conjunction of the conjunction of the conjunc- tion of the conjunction of the conjunc	the context specific technical specification I approved datasing the SISOS analysis and appear specific type eggs. Moulement 18 ISOS analysis and appear project goods type eggs. Moulement 18 ISOS analysis are the work of the proper specification is carried and the considered based upon performance, quality, and the considered based upon performance, quality, and yet this approval letter. All other clauses neutrinos in above that process inspections and regarded substructions of processiperceast and staff continues for above teen in case of sections and regarded substructions of processiperceast and appeared and a substruction of processiperceast and appeared and appeared to the context of the context o

JHARKHAND URJA SANCHARAN NIGAM LTD.

ELECTRICIDADE DE MOZAMBIQUE

REC POWER DISTRIBUTION COMPANY LTD.

VERTICALS & CLIENTELE

International Division —

LPIPL has a dedicated team of experts and seasoned professionals catering to international clients, complementing their requirements with our know-how and wide portfolio of electrical products. With robust R&D initiatives and more than 15 years of presence in Global markets, **LPIPL** has a steady track record of supplying products that comply with all the major international standards viz.

Successful execution of complex projects across some of the most difficult terrains and climatic conditions through meticulous planning equips us with expertise in commissioning projects ahead of schedule, addressing the key constraints of time and unfavourable ground conditions.

In pursuit of expanding our footprint overseas for EPC contracts in the Power Transmission & Distribution Sector, we have invested our resources into hiring and retaining highly soughtafter designers and engineers with vast experience in project execution across international geographies viz. Africa, the Middle East, Asia-Pacific, SAARC and South America.

With a customer-centric approach and integrated capabilities, our International division is equipped to undertake and execute projects in the following sectors:

- Rural Electrification Projects
- Off the Grid and On Grid Solar Power Projects
- Transmission Lines
- Reconductoring of Transmission Line with New Generation Conductors
- Underground Cabling
- Conventional Substation
- GIS Substations

New Command Centre ___

With a zeal to offer more value and world-class experience to every stakeholder, we are all set to upgrade to a 55,000 sq.ft. office area in the business district of Kolkata at Sector-V, Salt Lake with close proximity to the Airport.

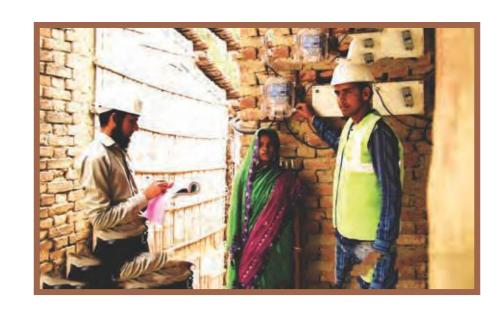
This modern infrastructural addition will act as our command centre. It will be our gateway to the rest of the world, reflecting the ethos of our principles and showcase the legacy that has brought us this far. We are excited to expand our wings and soar higher, exploring uncharted territories, realising our full potential and achieving the dreams that fuel our ambitions.

EPC OVERVIEW

LPIPL offers one of the most extensive and innovative line-ups of Energy products in India. Our journey as an EPC contractor for transmission and distribution of power began three decades ago, which is gaining momentum and scaling new heights every day.

The following underpins the growth trajectory of our company:

- Home to a seasoned and dynamic workforce that plays a critical role in Planning, Engineering, Drawing & Designing, Execution, Quality Control (ISO 9001:2015) and Safety Measures (OHSAS 18001:2015)
- Strong tie-ups with our clients (PGCIL, NTPC, SBPDCL, NBPDCL, WBSEDCL, OPTCL, JBVNL & APDCL) whose continuous support has helped LPIPL cement its position as the Industry leader
- A full-fledged construction division with cutting-edge equipment, tools and testing instruments that ensure high-quality of products


Our plethora of shining awards are testimony to our impact in shaping the Industry with futuristic innovations and serving communities with the most energy-efficient solutions.

PGCIL and **NTPC** - two of the most prestigious government-owned corporations in India's Power segment - have awarded us the most challenging RGGVY project worth ₹603 Cr.

In recognition of our dedication to faster delivery timelines, the **Certificate of Appreciation & Excellence** was conferred upon us by Bihar State Utility during 2017-18.

Innovation is the key to gaining competitive advantage in the Power Transmission & Distribution Sector where **LPIPL** has been a pioneer. We are the proud recipient of consolidated contracts worth approximately ₹3500 Cr. across Eastern & North-Eastern India.

LPIPL is at the forefront of Distribution, installing a number of new 33/11kV Sub-stations and thousands of kilometres of 33kV, 11kV & LT line Distribution Transformers. After successfully making a mark in the Power Industry, we plan to expand our portfolio and take up Transmission, EHV Network, Solar Power and other challenging projects in the future.

PAST & PRESENT PROJECTS

LPIPL has been a front-runner in India's power resurgence. As a pioneer in creating a sustainable future for more than 30 years, we take pride in contributing to India's economic and social development, undertaking turnkey Rural Electrification Projects for various state DISCOMS:

- Assam Power Distribution Co. Ltd.
- Power Grid Corporation of India Ltd.
- South Bihar Power Distribution Co. Ltd.

We take pride in our accomplishments, with an extended scope of work that involves Survey,

Separation & Creation of Agriculture / Non-Agriculture feeders, Engineering, Design, Preparation of All Drawings, Testing of the materials, Supply of materials and Equipment as per technical specifications.

Projects Undertaken: 4

- Rajiv Gandhi Grameen Vidyutikaran Yojna (RGGVY)
- Deen Dayal Upadhyay Gram Jyoti Yojna (DDUGJY)
- Integrated Power Development Scheme (IPDS)
- Mukhyamantri Vidyut Sambandh Nischay Yojana

Projects under Execution: 4

We are catering to India's vast and diverse Power needs with a plethora of endeavours in the pipeline, notable among them being works undertaken for:

- Odisha Power Transmission Corporation Ltd.
- North Bihar Power Distribution Co. Ltd.
- South Bihar Power Distribution Co. Ltd.
- Jharkhand Bijli Vitran Nigam Limited
- National Thermal Power Corporation Ltd.
- West Bengal State Electricity Distribution Co. Ltd.

Success Stories at **LPIPL** are all about illuminating hopes and dreams, powering progress and strengthening the economy. The road ahead is challenging but our expertise and resilience will outshine every obstacle.

GROUP FINANCIAL PERFORMANCE

Our financial Strength and Stability has been recognized by renowned Credit Rating Agencies. We have been awarded A+ (Long Term) and A1+ (Short Term) rating by Acuite Ratings & Research Ltd.

Particulars	2019-2020 (Rs Lacs)	2018-2019 (Rs Lacs)	2017-2018 (Rs Lacs)	2016-2017 (Rs Lacs)	2015-2016 (Rs Lacs)
Sales & other Income	1,08,845.20	1,21,644.86	65,606.77	39,604.09	27,016.86
PBT	12,413.28	7,325.45	3,533.37	2,041.82	1,159.94
Net Worth	24,891.20	15,449.16	10,746.86	8,430.25	7,181.27
Fixed Assets (Gross)	15,321.22	11,351.95	6,766.19	5,541.46	3,766.04
Fixed Deposit With banks	6,527.09	6,331.60	4,109.69	2,819.22	914.49
Inventories	5,756.16	10,118.75	8,555.44	6,826.12	4,670.56
PAT	9,442.04	4,702.30	2,316.61	1,246.98	776.66

AWARDS & RECOGNITION

AWARDS & RECOGNITION

At **LPIPL**, we strive to "achieve new heights" of success everyday and believe in celebrating our achievements with pride. An array of awards are proof of our dedication, commitment to quality and team work.

Whenever we receive accolades for the quality of products and expertise of service, we remind ourselves of our humble beginnings almost 30 years back and reflect on how far we've come.

But there is a long way to go! We hope the journey ahead will open up new roads of progress and create unique avenues for sustainable growth.

As we celebrate the milestones, we want the nation to celebrate a power-efficient tomorrow with us. These awards are dedicated to India and the people of this beautiful land.

'Great Place to Work' Certificate presented by HRD India for being an effective benchmark for Workplace Culture

AWARDS & RECOGNITION

बिहार स्टेट पाकर (होस्डिंग) कम्पनी लिभिटेंड विहार के सभी दोलों तक विजली पहुँचाने के कार्यक्रम के अन्तर्गत मेससी लेजर पावर एणड इन्फ्रा प्राण स्थित को उकुष्ट कार्य करने हेतु प्रदत्ता।

में लेजर पावर इन्फ्रा लिं, कोलकता को

प्रशास्त्र प्रभ

16

विद्युतीकरण

राज्य के अविद्युतीकृत गाँवों के

लक्ष्य की प्राप्ति में उत्कृष्ट योगदान हेतु प्रदत्त।

For Electrification of all unelectrified villages under RGGVY Scheme at Aurangabad District

For Electrification of all unelectrified villages under RGGVY Scheme at Saran District

(प्रत्ययं अमृत) अध्यक्ष-सह-प्रबंध निदेशक

AWARDS & RECOGNITION

For outstanding contribution in execution of the "HarGharBijli"/ SAUBHAGYA Scheme at Gopalganj District under Chapra Circle

ii"/ For outstanding contribution in execution of the "HarGharBijli"/ SAUBHAGYA Scheme under Bhagalpur Circle

28

बिहार स्टेट पावर (होस्डिंग) कम्पनी लिमिटेड

8

(3)

LASER PVC AND XLPE LT POWER CABLE

Laser Cable produces LT Power Cable with PVC or XLPE Insulation of Voltage grade upto 3.3 Kv conforming to Indian and various International Standards.

Cross Linked Polyethylene (XLPE)

XLPE means crosslinked Polyethylene. The compound is based on a high molecular weight polymer. A high degree of crosslinking is attained in the processed form and thus attains excellent electrical and mechanical properties.

Advantages of XLPE Cables

- Higher current rating allows selecting the lower size of XLPE cable compared to PVC cable
- Higher short circuit rating 250°C compared to 160°C that for PVC cables
- Resistant to heat deformation while PVC is prone to heat deformation
- Respective short circuit/overload condition is reliable
- Lower dielectric loss
- Jointing & Termination is easy
- Lighter in weight considering the lower overall diameter

Comparative properties of PVC and XLPE Insulation

Characteristics	Unit	PVC	XLPE
Permitivity (50 Hz, 20°C)	-	4-6	2.3
Dielectric Loss Factor (50 Hz, 20°C)	-	0.05-0.07	0.0004
Volume Resistivity (27°C)	Ohms cm (min)	10^13	10^14
Max. conductor temperature	Deg. C	70	90
Max. short circuit temperature	Deg. C	12.5	12.5
Tensile Strength	N/mm2 (min)	12.5	12.5
Elongation at break	-	Excellent	Medium
Flexibility at - 10°C	-	Poor	Good
Resistance to abrasion	-	Medium	Good

Applicable Standards

PVC Power & Control Cable : IS 1554/Part 1/1988 XLPE Power & Control Cable : IS 7098/Part 1/1988

CONDUCTOR DATA

Conductor Technical Data for Single Core and Multicore cables conforming to IS-8130/1984 (Stranded - Class 2) Aluminium Conductors and Annealed Copper Conductors, compacted circular / Non-compacted circular -

Nominal size		Minimum no. of wires	o. of wires		Max DC resistance at 20°C	ance at 20°C	AC resistar	AC resistance at 70°C	AC resistance at 90°C	ice at 90°C
conductor	Non-cor	Non-compacted	Compacted	acted	Plain Copper	Aluminium	Plain Copper	Aluminium	Plain Copper	Aluminium
Sqmm	Cu	Ai	Cu	Ai	0hm/Km	0hm/Km	0hm/Km	0hm/Km	0hm/Km	0hm/Km
1.5	3	3	1	1	12.10	18.10	14.50	21.72	15.50	23.17
2.5	3	က	ı	1	7.14	12.10	8.87	14.52	9.48	15.50
4	7	3	ı	1	4.61	7.41	5.52	8.89	5.90	9.48
9	7	က	ı	1	3.08	4.61	3.69	5.53	3.94	5.90
10	7	7	9	1	1.83	3.08	2.19	3.70	2.34	3.94
16	7	7	9	9	1.15	1.91	1.38	2.29	1.47	2.44
25	7	7	9	9	0.727	1.20	0.87	1.44	0.93	1.54
35	7	7	9	9	0.524	0.868	0.627	1.04	0.671	1.11
50	19	19	9	9	0.387	0.641	0.463	0.77	0.495	0.82
70	19	19	12	12	0.268	0.443	0.321	0.53	0.343	0.567
95	19	19	15	15	0.193	0.320	0.231	0.38	0.247	0.410
120	37	37	18	15	0.153	0.253	0.184	0.30	0.196	0.324
150	37	37	18	15	0.124	0.206	0.149	0.25	0.159	0.264
185	37	37	30	30	0.0991	0.164	0.120	0.20	0.127	0.210
240	61	37	34	30	0.0754	0.125	0.091	0.15	0.0965	0.160
300	61	61	34	30	0.0601	0.100	0.073	0.12	0.0769	0.128
400	61	61	53	53	0.0470	0.0778	0.059	0.0930	0.0602	0.100
200	61	61	53	53	0.0366	0.0605	0.046	0.0726	0.0468	0.0774
930	91	91	53	53	0.0283	0.0469	0.037	0.0563	0.0362	0.0600
800	91	91	53	53	0.0221	0.0367	0.031	0.0440	0.0283	0.0470
1000	91	91	53	53	0.0176	0.0291	0.027	0.0349	0.0225	0.0372

SHORT CIRCUIT CURRENT RATINGS FOR XLPE/PVC CABLE

Short Circuit Rating for 1 second duration for XLPE & PVC Insulated Cables with Copper and Aluminium Cables (Isc Current in KAmps)

Nominal Size			PVC In:	nsulated		
Sq.mm	Copper	Aluminium	Copper	Aluminium		
1.5	0.21	-	0.173	-		
2.5	0.36	-	0.283	-		
4	0.57	0.38	0.46	0.303		
6	0.86	0.57	0.69	0.455		
10	1.4	0.94	1.15	0.758		
16	2.3	1.5	1.84	1.21		
25	3.6	2.4	2.88	1.90		
35	5.0	3.3	4.03	2.65		
50	7.1	4.7	5.75	3.79		
70	10.0	6.6	8.05	5.31		
95	13.6	9.0	10.9	7.20		
120	17.1	11.3	13.8	9.10		
150	21.4	14.2	17.3	11.40		
185	26.4	17.5	21.3	14.02		
240	34.3	22.6	27.6	18.20		
300	42.9	28.3	34.5	22.80		
400	57.1	37.7	46.0	30.40		
500	71.4	47.2	57.5	38.00		
630	90.0	59.4	72.5	47.25		
800	114.3	75.5	92.0	60.00		
1000	142.9	94.3	115.0	75.00		

Rating for any other duration:

1) Max. Initial Conductor Temperature during operation:

XLPE PVC 90°C 70°C

2) Max. final conductor temperature during short circuit:

XLPE PVC 250°C 160°C

Formula relating short circuit rating with t second duration $It = \frac{Isc}{\sqrt{t}}$

Where It = Short circuit rating for t second

t = duration in seconds

Isc = Short circuit rating for I second

* PVC Type 'A' Insulation as per IS-5831-1984

** PVC Cables as per IS-1554(P-I) 1988

*** XLPE cables as per IS-7098 (PI) 1988

Comparative current rating of 650/1100 volts multicore heavy duty PVC insulated cables & XLPE Insulated cables. 3,3.5 & 4 core unarmoured / armoured PVC sheathed cables with aluminium conductor

Nominal size of cable			sulated & Sheathed 1554 (P-1) 1988	3,3.5 & 4 core XLPE Insulated & PVC Sheathed Cables as per IS-1554 (P-1) 1988				
Sq.mm.	m. In Ground In Air Approx		Approx. voltage	In Ground	In Air	Approx. voltage		
	Amp	Amp	drop Mv/Amp/mtr	Amp	Amp	drop Mv/Amp/mtr		
16	60	51	4.0	73	70	4.2		
25	76	70	2.5	94	96	2.7		
35	92	86	1.8	113	117	1.9		
50	110	105	1.3	133	142	1.4		
70	135	130	0.93	164	179	0.99		
95	165	155	0.68	196	221	0.72		
120	185	180	0.54	223	257	0.58		
150	210	205	0.46	249	292	0.48		
185	235	240	0.38	282	337	0.39		
240	275	280	0.28	327	399	0.31		
300	305	315	0.25	367	455	0.26		
400	335	375	0.2	420	530	0.21		

CURRENT RATING (PVC)

The current ratings in table 1 & 2 based on the normal conditions of installation as described below:

1. Maximum condr. temperature	70°C	5. Thermal resistivity of soil	150°C cm/watt
2. Ambient air temperature	40°C	6. Thermal resistivity of cable	650°C C cm/watt
3. Ground temperature	30°C	7. Max. short-circuit conductor t	emperature 160°C
4. Depth of laying		8. Max. Ambient Air Temperature	e 55°C

(for cable laid directly in ground 75 cm (1.1. KV)

Installation method and rating factors are given in tables 1 to 6.

TABLE 1 Rating for variations in ground temperature for cables laid directly in ground and in ducts

Ground temperature °C	15	20	25	30	35	40	45	50	55
Rating factor	1.17	1.12	1.06	1.0	0.94	0.87	0.79	0.70	0.60

TABLE 2 Rating factors for variation in ambient air temperature

Air temperature °C	25	30	35	40	45	50	55
Rating factor	1.25	1.16	1.09	1.00	0.90	0.80	0.69

TABLE 3 Rating facors of group of twin and multicore cables laid directly in ground in horizontal formation

No. of Cables		Ra	ting factor fo	r axial spaciı	ng
No. of Captes	Touching	15 cm	30 cm	45 cm	60 cm
2 cables	0.78	0.81	0.85	0.88	0.90
3 cables	0.68	0.71	0.77	0.81	0.83
4 cables	0.61	0.65	0.72	0.76	0.79
6 cables	0.53	0.58	0.66	0.71	0.76
8 cables	0.48	0.54	0.62	0.67	0.72

TABLE 4 Rating factors of groups of twin and multicore cables laid directly in ground in tier formation

No of Cables		Rating fa	actor for axia	l spacing	
No. of Cables	Touching	15 cm	30 cm	45 cm	60 cm
4 cables	0.60	0.67	0.73	0.76	0.78
6 cables	0.51	0,57	0.63	0.67	0.69
8 cables	0.45	0.51	0.57	0.59	0.61

TABLE 5 Rating factors for variation in depth of laying in ground

Depth of laying (cms)	75	90	105	120	150	150 & above
Rating factor upto 25 sq. mm.	1.00	0.99	0.98	0.97	0.96	0.95

TABLE 6 Group-rating factors for cables installed in ground, separated by more than 7 cms.

No. of cables	1	2	3	4	5	6
Single core D.C. cables & multicore power cables	1.00	0.90	0.80	0.75	0 70	0 65
Single core A.C. cables	1.0	0,80	0,75	0.70	0.65	0.60

& UNARMOURED POWER CABLES

									(Č	U	N.	A	KL	Ý/	JU	JK	ΚE	ע	F	U	W	В	K
Ų	ภ	L	3 ables	Amp	27	35	47	94	84	105	130	155	190	220	250	290	335	380	435	480	550	009	720	
H	<u>₹</u>	In Air	2 ables Ca	Amp /	32	41	26	72	66	120	150	185	215	240 2	270 2	305	250	395	455 4	7 065	260	9 059	740	
Ė	CURRENI KALINGS	e ii	3 ables C	Amp	31	39	21	99	98	100	120	140	175	195	220	240	270	295	325	345	390	442	485	
	7 7 7	Direct in Ground	2 3 2 3 Cables Cables Cables	Amp	36	77	26	75	67	120	145	175	210	240	270	305	335	370	410	435	485	525	570	
V V V	Max.A.C. Resistance	at 70°C		Ohms/Km	8.8900	5.5300	3.7000	2.2900	1.4400	1.0400	0.7700	0.5300	0.3800	0.3000	0.2500	0.2000	0.1500	0.1200	0.0934	0.0726	0.0563	0.0440	0.0349	
, XeV	Max. D.C. Max.A.C. Resistance Resistance	at 20°C		(Kg/Km) 0hms/Km 0hms/Km	7.4100	4.6100	3.0800	1.9100	1.2000	0.8480	0.6410	0.4430	0.3200	0.2530	0.2060	0.1640	0.1250	0.1000	0.0778	0.0605	0.0469	0.0367	0.0291	
		Approx. Net Wt.	or cable	(Kg/Km)	68	103	127	152	204	244	310	388	501	621	726	884	1106	1336	1690	2120	2709	3430	4064	
	UKED		(Approx.)	(mm)	9.8	9.1	10.1	10.8	12.4	13.4	14.9	16.5	18.6	21.1	22.2	24.5	27.3	29.8	33.6	37.4	42.2	48.0	52.2	
	UNAKMOUKED	Nom. Thickness of	FVC Outer Sheath	[mm]	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	2.0	2.0	2.0	2.0	2.0	2.2	2.2	2.4	2.4	2.6	
-	_		(Norn.)	(mm)	1.0	1.0	1.0	1.0	1.2	1.2	1.4	1.4	1.6	1.6	1.8	2.0	2.2	2.4	2.6	3.0	3.4	3.4	3.4	
		Approx. Net Wt.	or cable	(Kg/Km)	148	165	196	225	287	334	411	513	662	784	868	1069	1337	1676	2032	2531	3183	4120	4812	
-	nred	Overall Approx. Diameter Net Wt.	(Approx.) or cable	(mm)	10.9	11.4	12.3	13.1	14.7	15.7	17.2	19.1	21.6	23.7	24.8	27.1	30.2	33.7	37.1	41.2	46.2	52.0	57.3	
	re Armo	Min Thickness of	PVC Outer Sheath	(mm)	1.24	1.24	1.24	1.24	1.24	1.24	1.24	1.40	1.40	1.40	1.40	1.40	1.56	1.56	1.56	1.72	1.88	1.88	2.04	
.,,,,	onna wi	Nominal Dimensions	ot Armour wire	(mm)	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.6	1.6	1.6	1.6	1.6	2.0	2.0	2.0	2.0	2.0	2.5	
	E E E	Approx. Net Wt. of	Cable	(Kg/Km)									610	710	840	1020	1250	1500	1910	2350	2920	3510	4300	
,	Alumi	Overall Diameter	(Approx.)	(mm)									21.0	22.0	24.0	26.0	29.0	32.0	36.0	40.0	44.0	48.0	53.0	
	Aluminium Strip / Aluminium Kound Wire Armoured	-	PVC Outer Sheath	(mm)									1.40	1.40	1.40	1.40	1.40	1.56	1.56	1.56	1.72	1.88	2.04	
	Aluminic	Nominal Dimensions	Insulation of Aluminium (Nom.) Flat Strip	[mm]									4x0.8	4x0.8	4x0.8	4x0.8	4×0.8	4×0.8	4×0.8	4x0.8	4×0.8	4x0.8	4×0.8	
		Thickness of PVC	(Nom.)	(mm)	1.3	1.3	1.3	1.3	1.5	1.5	1.7	1.7	1.9	1.9	2.1	2.3	2.5	2.8	3.0	3.4	3.9	3.9	4.0	
XII.	ΣZ	of Wires			1	_	_	9	9	9	9	12	15	15	15	30	30	30	53	53	53	53	53	
90 ON	no. or	& cross sectional	area		1CX4	1CX6	1CX10	1CX16	1CX25	1CX35	1CX50	1CX70	1CX95	1CX120	1CX150	1CX185	1CX240	1CX300	1CX400	1CX500	1CX630	1CX800	1CX1000	

1C/PVC/AR/UNAR LT POWER CABLE

1 CORE COPPER PVC ARMOURED

& UNARMOURED POWER CABLES

								•	&	U	N.	A	KL	4/	O(L)	JK	<u> </u>	ע	F	U	W	L
GS	L	3 ables	Amp	35	77	09	82	110	130	165	205	245	280	320	370	425	475	550	290	099	743	830
CURRENT RATINGS	In Air	2 3 Cables Cables	Amp /	43	54	72	92	125	155	190	235 2	275	310	345	390	7 445	2000	570	610	089	766	856
ENT	ië e		Amp	39	67	92	85	110	135	155	190	220	250	280	305	345	375	400	425	470	530	585
CURF	Direct in Ground	2 3 Cables Cables	Amp	97	57	75	9.4	125	150	180	220	265	300	340	380	420	465	200	240	290	799	733
Max.A.C. Resistance	at 70°C		0hms/Km	5.52	3.69	2.19	1.38	0.870	0.627	0.463	0.321	0.231	0.184	0.149	0.12	0.091	0.074	0.059	0.046	0.037	0.031	0.077
Max. D.C. Resistance F			0hms/Km	4.61	3.08	1.83	1.15	0.727	0.524	0.387	0.268	0.193	0.153	0.124	0.0991	0.0754	0.0601	0.0470	0.0366	0.0283	0.0221	0.0176
- ~		or capte	(Kg/Km) 0	114	142	190	248	357	458	595	805	1081	1332	1630	2013	2592	3202	4070	5175	9999	8248	10,19
URED	Overall Diameter	(Approx.) of cable	(mm)	8.60	9.10	10.1	10.8	12.4	13.4	14.9	16.5	18.6	21.1	22.2	24.5	27.3	29.8	33.6	37.4	42.2	48.0	52.2
UNARMOURED	Nom. Thickness of	Sheath	(mm)	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.80	2.00	2.00	2.00	2.00	2.00	2.20	2.20	2.40	2.40	2 60
_	Thickness of PVC	(Nom.)	(mm)	1.00	1.00	1.00	1.00	1.20	1.20	1.40	1.40	1.60	1.60	1.80	2.00	2.20	2.40	2.60	3.00	3.40	3.40	07.8
		(Approx.) or cable	(Kg/Km)	173	204	259	320	440	248	969	930	1243	1515	1802	2198	2822	3542	4412	5585	7138	9000	111147
onred		(Approx.)	(mm)	10.9	11.4	12.3	13.1	14.7	15.7	17.2	19.1	21.6	23.7	24.8	27.1	30.2	33.7	37.1	41.2	46.2	52.0	57.3
ind Wire Armoured	Min Thickness of	Sheath	(mm)	1.24	1.24	1.24	1.24	1.24	1.24	1.24	1.40	1.40	1.40	1.40	1.40	1.56	1.56	1.56	1.72	1.88	1.88	2 07
ound Wi	Nominal Dimensions	or Armour wire	(mm)	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.6	1.6	1.6	1.6	1.6	2.0	2.0	2.0	2.0	2.0	2.5
nium R	Approx.	capte	(Kg/Km)									1200	1460	1770	2170	2740	3360	4400	5450	6820	8595	10663
/ Alumi	Overall Diameter		(mm)									21	22	24	26	29	32	36	70	77	87	53
m Strip /		Sheath Sheath	(mm)									1.40	1.40	1.40	1.40	1.40	1.56	1.56	1.56	1.72	1.88	2.04
Aluminium Strip / Aluminium Rou		(Nom.) Flat Strip	(mm)									4x0.8	4x0.8	4x0.8	4x0.8	4x0.8	4x0.8	4×0.8	4×0.8	4×0.8	4x0.8	8 Ux7
	Thickness of PVC	(Nom.)	(mm)	1.3	1.3	1.3	1.3	1.5	1.5	1.7	1.7	1.9	1.9	2.1	2.3	2.5	2.8	3.0	3.4	3.9	3.9	U 7
N Ö.	of Wires			-	-	9	9	9	9	9	12	15	18	18	30	34	34	53	53	53	53	53
No. of	& cross sectional	area		1CX4	1CX6	1CX10	1CX16	1CX25	1CX35	1CX50	1CX70	1CX95	1CX120	1CX150	1CX185	1CX240	1CX300	1CX400	1CX500	1CX630	1CX800	1CX1000

& UNARMOURED POWER CABLES

							(&	U	N.	A	R	4	JU	Jĸ	RE	D	P	0
S	<u>.</u>	ñ		_															
ATING	ct In Air	s Amps	16	21	27	35	47	29	78	66	125	150	185	210	240	275	325	365	420
N T	In Duct	Amps	16	21	27	34	45	28	76	92	115	140	170	190	210	240	275	305	345
CURRENT RATINGS	Direct in Ground	Amps	18	25	32	40	55	70	06	110	135	160	190	210	240	275	320	355	385
Approx.	tance	mFd/Km	0.140	0.150	0.160	0.190	0.220	0.290	0.320	0.370	0.370	0.440	0.440	0.490	0.490	0.490	0.500	0.520	0.530
Approx.	at 50 Hz	Ohms/Km	0.126	0.119	0.116	0.110	0.100	0.097	0.097	0.097	0.094	0.090	0.090	0.087	0.087	0.087	0.087	980.0	0.086
Max. A.C.	at 70°C	0hms/Km	21.72	14.52	8.89	5.53	3.70	2.29	1.44	1.04	0.77	0.53	0.38	0:30	0.25	0.20	0.15	0.12	0.09
Max. D.C.	at 20°C	0hms/Km	18.10	12.10	7.41	4.61	3.08	1.91	1.20	0.868	0.641	0.443	0.320	0.253	0.206	0.164	0.125	0.100	0.0778
RED	Net Wt. of Cable (Approx.)	Kg/Km	170	210	265	320	338	317	461.0	537.0	683.0	838.0	1107.0	1291.0	1592.0	1933.0	2424.0	2981.0	3755.0
UNARMOURED	Overall Diameter (Approx.)	[mm]	10.40	11.90	13.40	14.40	16.50	18.60	20.40	21.40	23.90	26.00	29.90	31.40	35.20	38.50	42.00	48.10	52.50
ND N	Nom. Thickness of Outer	Sheath (mm)	1.8	1.80	1.80	1.80	1.80	1.80	2.00	2.00	2.00	2.00	2.20	2.20	2.40	2.40	2.60	2.80	3.20
	. Net Sable	Wire [kg/km]	390	450	220	979	703	795	887	916	1198	1411	1915	2170	2553	3013	3908	4675	9290
	Approx. Net Wt. of Cable	Strip (kg/km)(,			,		528	829	747	923	1124	1411	1613	1948	2357	2880	3500	4560
	Overall Diameter (Approx.)	Wire (mm)	13.5	15.0	16.5	17.5	19.0	20.4	22.4	23.4	26.2	28.3	32.6	34.4	37.8	41.5	45.9	51.9	60.5
URE	Ove Dian (App	Strip (mm)	١.					18.8	20.8	21.8	24.3	26.7	30.2	31.7	35.4	39.1	42.5	48.5	55.5
ARMOURED	ckness Outer ath	Wire (mm)	1.24	1.24	1.24	1.24	1.24	1.40	1.40	1.40	1.56	1.56	1.56	1.72	1.72	1.88	2.04	2.20	2.52
4	Min. Thickness of PVC Outer Sheath	Strip (mm)	,			,		1.40	1.40	1.40	1.40	1.56	1.56	1.56	1.72	1.88	2.04	2.20	2.36
	inal sions nour	Wire (mm)	1.40	1.40	1.40	1.40	1.40	1.60	1.60	1.60	1.60	1.60	2.00	2.00	2.00	2.00	2.50	2.50	3.15
	Nominal Dimensions of Armour	Strip (mm)	,	ı	ı	ı	ı	4×0.8	4×0.8	4×0.8	4×0.8	4×0.8	4×0.8	4×0.8	4×0.8	4×0.8	4×0.8	4x.08	4×0.8
Min. Thickness	of PVC Inner Sheath	(mm)	0:30	0:30	0:30	0:30	0:30	0:30	0:30	0:30	0:30	0:30	07.0	07.0	0.40	0.50	0.50	09.0	0.70
Thickness of PVC	insulation (Nom.)	(mm)	08.0	06.0	1.00	1.00	1.00	1.00	1.20	1.20	1.40	1.40	1.60	1.60	1.80	2.00	2.20	2.40	2.60
M N	of Wires		_	_	_	_	_	9	9	9	9	12	15	15	15	30	30	30	53
No. of	& cross sectional Area		2Cx1.5	2Cx2.5	2Cx4	2Cx6	2C×10	2Cx16	2Cx25	2Cx35	2Cx50	2C×70	2Cx95	2C×120	2C×150	2C×185	2Cx240	2Cx300	2Cx400

LT/2CORE/AR/UNAR

CLaser Cables

& UNARMOURED POWER CABLES

				4				<u>uk</u>	_			A			<i>y</i>	¥-			
NGS	In Air	Amps	20	27	35	45	09	78	105	125	155	195	230	265	305	350	410	465	530
IT RATI	n Duct	Amps	20	27	35	77	28	75	67	120	145	180	215	235	270	300	345	385	425
CURRENT RATINGS	Direct in In Duct In Air Ground	Amps	23	32	41	20	70	06	115	140	165	205	240	275	310	350	405	450	490
Approx. (Capaci-		mFd/Km	0.14	0.15	0.16	0.19	0.22	0.29	0.32	0.37	0.37	0.44	0.44	0.49	0.49	0.49	0.50	0.52	0.53
Approx. Reactance	at 50 Hz	Ohms/Km	0.126	0.119	0.116	0.110	0.100	0.097	0.097	0.097	0.094	0.090	0.090	0.087	0.087	0.087	0.087	980.0	980.0
Max. A.C. Resistance		Ohms/Km (14.5	8.87	5.52	3.69	2.19	1.38	0.87	0.627	0.463	0.321	0.231	0.184	0.149	0.120	0.091	0.073	0.059
Max. D.C. Resistance R		Ohms/Km (12.1	7.4	4.6	3.08	1.83	1.115	0.722	0.524	0.387	0.268	0.193	0.153	0.124	0.0991	0.0754	0.0601	0.0470
	Net Wt. of Cable (Approx.)	Kg/Km	194	248	316	397	515	531	767	996	1254	1677	2274	2760	3409	4101	5409	6732	8466
UNARMOURED	Overall Diameter (Approx.)	(mm)	10.4	11.9	13.4	14.4	15.9	18.0	20.4	21.4	23.9	26.0	29.9	31.4	35.2	38.5	42.0	48.1	52.5
N O N	Nom. Thickness of Outer	Sheath (mm)	1.80	1.80	1.80	1.80	1.80	1.80	2.00	2.00	2.00	2.00	2.20	2.20	2.40	2.40	2.60	2.80	3.20
	Approx. Net Wt. of Cable	Wire (kg/km)	407	482	296	711	863	917	1193	1405	1768	2250	3081	3639	4369	5281	6893	8424	11171
	Appro Wt. of	Strip (kg/km)						721	696	1176	1494	1963	2577	3082	3765	4626	2865	7250	9188
D	Overall Diameter (Approx.)	Wire (mm)	13.5	15.0	16.5	17.5	19.0	20.4	22.4	23.4	26.2	28.3	32.6	34.4	37.8	41.5	42.9	51.9	60.5
OURE		Strip (mm)	٠			'		18.8	20.8	21.8	24.3	26.7	30.2	31.7	35.4	39.5	42.5	48.5	55.5
ARMOURED	Min. Thickness of PVC Outer Sheath	Wire (mm)	1.24	1.24	1.24	1.24	1.24	1.40	1.40	1.40	1.56	1.56	1.56	1.72	1.72	1.88	2.04	2.20	2.52
	Min. The of PVC She	Strip (mm)	٠		'	'	'	1.40	1.40	1.40	1.40	1.56	1.56	1.56	1.72	1.88	2.04	2.20	2.36
	Nominal Dimensions of Armour	Wire (mm)	1.40	1.40	1.40	1.40	1.40	1.60	1.60	1.60	1.60	1.60	2.00	2.00	2.00	2.00	2.50	2.50	3.15
		Strip (mm)	'	1	,	'	,	4x0.8	4x0.8	4x0.8	4x0.8	4x0.8	4x0.8	4x0.8	4x0.8	4x0.8	4x0.8	4x.08	4x0.8
Min. Thickness	of PVC Inner Sheath	(mm)	0:30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.40	0.40	0.40	0.50	0.50	09.0	0.70
Thickness of PVC	_	(mm)	08'0	06.0	1.00	1.00	1.00	1.00	1.20	1.20	1.40	1.40	1.60	1.60	1.80	2.00	2.20	2.40	2.60
M N	of Wires		-	-	-	-	9	9	9	9	9	12	15	18	18	30	34	34	53
No. of	& cross sectional Area		2Cx1.5	2Cx2.5	2Cx4	2Cx6	2C×10	2Cx16	2Cx25	2Cx35	2Cx50	2C×70	2Cx95	2C×120	2C×150	2Cx185	2Cx240	2Cx300	2Cx400

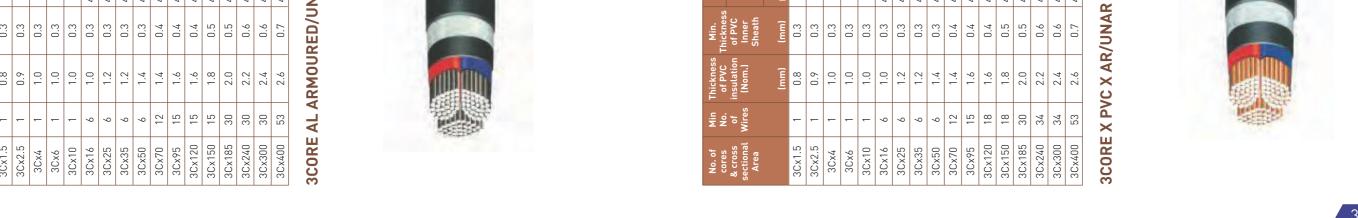
2CORE PVC ARMOURED/UNARMOURED

2 CORE COPPER PVC ARMOURED

& UNARMOURED POWER CABLES

							(Čć	U	N.	A	RL	41	JL	Jĸ	<i>\</i> Ε	D	P	U	Ľ
GS	Air	Amps	13	18	23	30	40	51	70	98	105	130	155	180	205	240	280	315	375	
CURRENT RATINGS	Direct in In Duct In Air Ground																			
ENT	u P	Amps	14	18	23	30	39	20	63	77	95	115	140	155	175	200	235	260	290	
CURR	Direct ir Ground	Amps	16	21	28	32	97	09	76	92	110	135	165	185	210	235	275	305	335	
Approx. Capaci-	tance	mFd/Km	0.140	0.150	0.410	0.470	0.560	0.760	0.860	0.980	1.020	1.180	1.200	1.310	1.310	1.310	1.340	1.410	1.450	
Approx. Reactance	at 50 Hz	0hms/Km	0.126	0.119	0.116	0.110	0.100	0.097	0.097	0.097	0.094	0.000	0.090	0.087	0.087	0.087	0.087	0.086	0.086	
Max. A.C. Resistance	at 70°C	0hms/Km	21.72	14.52	8.89	5.53	3.70	2.29	1.44	1.04	0.77	0.53	0.38	0:30	0.25	0.20	0.15	0.12	0.09	
Max. D.C. Resistance	at 20°C	0hms/Km	18.10	12.10	7.41	4.61	3.08	1.91	1.20	0.868	0.641	0.443	0.320	0.253	0.206	0.164	0.125	0.100	0.0778	
RED	Net Wt. of Cable (Approx.)	Kg/Km	190	230	300	350	435	415	586	705	913	1187	1538	1829	2228	2743	3541	4296	5537	
UNARMOURED	Overall Diameter (Approx.)	(mm)	11.0	12.0	13.4	14.4	15.6	18.4	21.5	23.3	26.5	29.9	33.8	37.0	40.1	44.6	50.7	55.5	63.8	
NO	Nom. Thickness of Outer	Sheath (mm)	1.80	1.80	1.80	1.80	1.80	1.80	2.00	2.00	2.00	2.20	2.20	2.20	2.40	2.60	2.80	3.00	3.40	
	x. Net Cable	Wire (kg/km)	420	200	262	982	830	767	971	1129	1436	1914	2420	2796	3249	4246	5171	9809	8135	
	Approx. Net Wt. of Cable	Strip (kg/km)	,			ı		269	750	888	1147	1426	1815	2166	2584	3099	3945	4731	5927	
	rall eter rox.)	Wire (mm)	14.0	15.0	16.5	17.5	19.5	20.2	22.9	24.7	28.2	32.0	36.2	39.4	42.4	47.9	53.7	58.4	9.79	
UREL	Overall Diameter (Approx.)	Strip (mm)	,		,	,		18.6	21.3	23.1	26.6	29.6	33.5	37.0	40.1	44.2	50.3	55.0	62.6	
ARMOURED	ckness Outer ath	Wire (mm)	1.24	1.24	1.24	1.24	1.40	1.40	1.40	1.40	1.56	1.56	1.72	1.72	1.88	2.04	2.20	2.36	2.68	
Q	Min. Thickness of PVC Outer Sheath	Strip (mm)	,			,		1.40	1.40	1.40	1.56	1.56	1.56	1.72	1.88	1.88	2.20	2.36	2.52	
		Wire (mm)	1.40	1.40	1.40	1.40	1.40	1.60	1.60	1.60	1.60	2.00	2.00	2.00	2.00	2.50	2.50	2.50	3.15	
	Nominal Dimensions of Armour	Strip (mm)	,	,	,	ı	,	4x0.8	4×0.8	4×0.8	4×0.8	4×0.8	4x0.8	4×0.8	4×0.8	4x0.8	4x0.8	4x0.8	4×0.8	
Min. Thickness	of PVC Inner Sheath	(mm)	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.4	0.5	0.5	9.0	9.0	0.7	
Thickness of PVC	insulation (Nom.)	(mm)	8.0	6.0	1.0	1.0	1.0	1.0	1.2	1.2	1.4	1.4	1.6	1.6	1.8	2.0	2.2	2.4	2.6	
Min	of Wires		-	_	_	_	_	9	9	9	9	12	15	15	15	30	30	30	53	
No. of	& cross sectional Area		3Cx1.5	3Cx2.5	3Cx4	3Cx6	3C×10	3Cx16	3Cx25	3Cx35	3Cx50	3C×70	3Cx95	3C×120	3C×150	3Cx185	3Cx240	3Cx300	3Cx400	

3CORE AL ARMOURED/UNARMOURED



& UNARMOURED POWER CABLES

				4									Н		44				
NGS	In Air	Amps	17	24	30	39	57	99	90	110	135	165	200	230	265	305	355	400	455
IT RATI	In Duct	Amps	17	24	30	38	20	99	81	66	125	150	175	195	225	255	295	335	360
CURRENT RATINGS	Direct in In Duct In Air Ground	Amps	21	27	36	45	09	77	66	120	145	175	210	240	270	300	345	385	425
Approx.		mFd/Km	0.14	0.15	0.41	0.47	0.56	0.76	98.0	0.98	1.02	1.18	1.20	1.31	1.31	1.31	1.34	1.41	1.45
Approx. Reactance	at 50 Hz	0hms/Km	0.126	0.119	0.116	0.110	0.100	0.097	0.097	0.097	0.094	0.090	0.090	0.087	0.087	0.087	0.087	980.0	980.0
Max. A.C. Resistance R		Ohms/Km 0	14.5	8.87	5.52	3.69	2.19	1.38	0.87	0.627	0.463	0.321	0.231	0.184	0.149	0.12	0.0912	0.0739	0.0592
Max. D.C. N		Ohms/Km 0	12.1	7.41	4.61	3.08	1.83	1.15	0.727	0.524	0.387	0.268	0.193	0.153	0.124	0.0991	0.0754	0.0601	0.047
	Net Wt. of Cable (Approx.)	Kg/Km (218	284	372	470	629	705	1046	1350	1783	2446	3286	4034	4954	6145	8018	9920	12717
UNARMOURED	Overall Diameter (Approx.)	(mm)	11.00	12.00	13.50	14.40	15.60	18.40	21.50	23.30	26.50	29.90	33.80	37.00	40.10	44.60	50.70	55.50	63.80
ONA	Nom. Thickness of Outer	Sheath (mm)	1.80	1.80	1.80	1.80	1.80	1.80	2.00	2.00	2.00	2.20	2.20	2.20	2.40	2.60	2.80	3.00	3.40
	x. Net Cable	Wire [kg/km]	442	542	699	789	1017	1057	1431	1773	2305	3173	4169	5001	5974	7648	8796	11710	15315
	Approx. Net Wt. of Cable	Strip Wire (kg/km)(kg/km						859	1210	1532	2016	2684	3564	4371	5309	6502	8422	10356	13107
D	Overall Diameter (Approx.)	Wire (mm)	14.0	15.0	16.5	17.5	19.5	20.2	22.9	24.7	28.2	32.0	36.2	39.4	42.4	47.9	53.7	58.4	9.79
ARMOURE		Strip (mm)		'	,	'	,	18.6	21.3	23.1	26.6	29.6	33.5	37.0	40.1	44.2	51.3	55.0	62.6
ARM (Min. Thickness of PVC Outer Sheath	Wire (mm)	1.24	1.24	1.24	1.24	1.40	1.40	1.40	1.40	1.56	1.56	1.72	1.72	1.88	2.04	2.20	2.36	2.68
	Min. Tl of PV Sh	Strip (mm)		'	'	'		1.40	1.40	1.40	1.56	1.56	1.56	1.72	1.88	1.88	2.20	2.36	2.52
	Nominal Dimensions of Armour	Wire (mm)	1.40	1.40	1.40	1.40	1.40	3 1.60	3 1.60	3 1.60	3 1.60	3 2.00	3 2.00	3 2.00	3 2.00	3 2.50	3 2.50	3 2.50	3.15
v		Strip (mm)		'			I	4×0.8	4×0.8	4×0.8	4x0.8	4x0.8	4x0.8	4×0.8	4x0.8	4x0.8	4x0.8	4x0.8	4×0.8
Min. Thickness	of PVC Inner Sheath	(mm)	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.4	9.0	0.5	0.5	9.0	9.0	0.7
Thickness of PVC	=	(mm)	8.0	6.0	1.0	1.0	1.0	1.0	1.2	1.2	1.4	1.4	1.6	1.6	1.8	2.0	2.2	2.4	2.6
Ε ο	of Wires		-	-	-	-	-	9	9	9	9	12	15	18	18	30	34	34	53
No. of	& cross sectional Area		3Cx1.5	3Cx2.5	3Cx4	3Cx6	3Cx10	3Cx16	3Cx25	3Cx35	3Cx50	3Cx70	3Cx95	3C×120	3Cx150	3Cx185	3Cx240	3Cx300	3Cx400

CURRENT RATINGS

86 105 130 155 180 205 240 280 280 3375

92 100 135 145 165 185 210 235 235 275 305 335

0.98 1.02 1.20 1.31 1.31 1.31 1.34 1.41

0.097 0.094 0.090 0.090 0.087 0.087 0.087 0.086

1.44 1.44 1.04 1.04 0.77 0.53 0.38 0.25 0.20 0.20 0.12 0.12

0.8680 0.6410 0.4430 0.3200 0.2530 0.2060 0.1640 0.1250 0.1000

Wire [mm]
25.4
26.4
26.4
30.0
34.9
34.9
42.1
46.4
52.2
58.9

Strip (mm)
23.8
24.8
24.8
32.5
36.2
36.2
39.3
44.00
48.8
55.2

1.40 1.56 1.72 1.72 1.88 1.88 2.04 2.36 2.36 2.36 2.36

1.40 1.56 1.56 1.72 1.72 2.04 2.20 2.30 2.30

0.3 0.3 0.4 0.4 0.5 0.5 0.5 0.6 0.6

6/6 1.2/1.0 6/6 1.4/1.2 12/6 1.4/1.2 15/6 1.6/1.4 0 15/12 1.6/1.4 0 30/15 2.0/1.6 0 30/15 2.2/1.6 0 30/15 2.4/1.8 5 53/30 2.6/2.0

3.5CX35/16

3.5CX35/16

3.5CX70/35

3.5CX120/70

3.5CX150/70

3.5CX185/95

3.5CX240/120

3.5CX240/120

3.5CX240/185

AYWY/AYFY AYWY/AYFY

AYWY/AYFY AYWY/AYFY

AYWY/AYFY
AYWY/AYFY
AYWY/AYFY
AYWY/AYFY
AYWY/AYFY

 Strip (mm)
 Wire (mm)

 4x0.8
 1.60

 4x0.8
 1.60

 4x0.8
 1.60

 4x0.8
 2.00

 4x0.8
 2.00

 4x0.8
 2.00

 4x0.8
 2.00

 4x0.8
 2.50

 4x0.8
 2.50

 4x0.8
 2.50

 4x0.8
 2.50

 4x0.8
 3.15

 1640
 2184

 2075
 2716

 2502
 3203

 2950
 3680

 3610
 4813

 4526
 5715

 5400
 7531

 6827
 9211

95 115 140 155 175 200 230 280 280 290

CURRENT RATINGS

M
0
CAL
O
2
VER
3
0
•
MOURED
5
9
5
3
5
In o/
PVC UI
1 PVC
TOMINION
TOMINION
TOMINION
TOMINION
TOMINION

S

Туре	No. of	M ii	Thickness	Min.	Nominal Thickness of	Overall	Net Wt.	Max.D.C.	Max. A.C.	Approx.	Approx.	CURRENT RATINGS	NT RA	INGS
	& cross sectional area	of Wires	insulation (Nom.)	of PVC Inner Sheath	PVC Outer Sheath	(Approx.)	(Approx.)	at 20°C	at 70°C			Direct in In Duct In Air Ground	In Duct	In Air
			(mm)	(mm)	(mm)	(mm)	kg/km	0hms/Km	0hms/Km	0hms/Km	mFd/Km	Amps	Amps	Amps
AYY	3.5Cx25/16	9/9	1.2/1.0	0:30	2.00	24.00	692	1.20	1.44	0.097	98.0	76	63	70
AYY	3.5Cx35/16	9/9	1.2/1.0	0:30	2.00	25.00	799	0.868	1.04	0.097	0.98	92	77	98
AYY	3.5Cx50/25	9/9	1.4/12	0:30	2.00	28.30	1034	0.641	0.77	0.094	1.02	110	95	105
AYY	3.5C×70/35	12/6	1.4/12	0.40	2.20	32.80	1373	0.443	0.53	0.090	1.18	135	115	130
AYY	3.5Cx95/50	15/6	1.6/1.4	0.40	2.20	36.50	1771	0.320	0.38	0.090	1.20	165	140	155
AYY	3.5C×120/70	18/12	1.6/1.4	0.50	2.40	39.70	2180	0.253	0:30	0.087	1.31	185	155	180
AYY	3.5Cx150/70	18/12	1.8/1.4	0.50	2.40	44.00	2554	0.206	0.25	0.087	1.31	210	175	205
AYY	3.5Cx185/95	30/15	2.0/1.6	0.50	2.60	48.90	3176	0.164	0.20	0.087	1.31	235	200	240
AYY	3.5Cx240/120	34/18	2.2/1.6	09.0	3.00	26.00	4128	0.125	0.15	0.087	1.34	275	235	280
AYY	3.5Cx300/150	34/18	2.4/1.8	09.0	3.20	09.09	4889	0.100	0.12	980.0	1.41	302	260	315
AYY	3.5Cx400/185	53/30	2.6/2.0	0.70	3.40	04.69	9344	0.0778	0.09	980'0	1.45	335	290	375

ាៗ	N.			Ų				V			100	
In Air	Amps	06	110	135	165	200	230	265	305	355	400	455
In Duct	Amps	81	66	125	150	175	195	225	255	295	335	360
Direct in In Duct In Air Ground	Amps	66	120	145	175	210	240	270	300	345	385	425
tance	mFd/Km	98.0	0.98	1.02	1.18	1.20	1.31	1.31	1.31	1.34	1.41	1.45
at 50 Hz	0hms/Km	0.097	0.097	0.094	0.090	0.090	0.087	0.087	0.087	0.087	0.086	0.086
၁့င	/Km	12	27	63	21	31	84	64	20	12	39	392

							: : :	
D.C. tance	Max.D.C.	Net Wt. Max. of Cable Resist		Net Wt. · of Cable	Overall Net Wt. Diameter of Cable	Nominal Overall Net Wt. Thickness Diameter of Cable	Thickness Min. Nominal Overall Net Wt. of PVC Thickness Thickness Diameter of Cable	Thickness Min. Nominal Overall Net Wt. of PVC Thickness Thickness Diameter of Cable
at 20°C			(Approx.)	r (Approx.) (Approx.)	of PVC Outer (Approx.) (Approx.) Sheath	n of PVC of PVC Outer (Approx.) (Approx.) Inner Sheath Sheath	of PVC of PVC Outer (Approx.) (Approx.) Inner Sheath Sheath	s of insulation of PVC of PVC Outer (Approx.) (Approx.) al Wires (Nom.) Inner Sheath Sheath
Ohms/Km		Kg/Km 0ł		Kg/Km	(mm) (mm) Kg/Km	(mm) (mm) Kg/Km	(mm) (mm) Kg/Km	(mm) (mm) Kg/Km
0.73		1248	24.00 1248		24.00	2.00 24.00	0.30 2.00 24.00	1.2/1.0 0.30 2.00 24.00
0.524		1541	25.00 1541		25.00	2.00 25.00	0.30 2.00 25.00	1.2/1.0 0.30 2.00 25.00
0.387		2058	28.30 2058		28.30	2.00 28.30	0.30 2.00 28.30	1.4/1.2 0.30 2.00 28.30
0.268		2845	32.80 2845		32.80	2.20 32.80	0.40 2.20 32.80	1.4/1.2 0.40 2.20 32.80
0.193		3810	31.50 3810		31.50	2.20 31.50	0.40 2.20 31.50	1.6/1.4 0.40 2.20 31.50
0.153		4804	39.70 4804		39.70	2.40 39.70	0.50 2.40 39.70	1.6/1.4 0.50 2.40 39.70
0.124		2699	64.00 5699		44.00	2.40 44.00	0.50 2.40 44.00	1.8/1.4 0.50 2.40 44.00
0.099		7161	48.90 7161		48.90	2.60 48.90	0.50 2.60 48.90	2.0/1.6 0.50 2.60 48.90
0.075		9340	56.00 9340		26.00	3.00 56.00	0.60 3.00 56.00	2.2/1.6 0.60 3.00 56.00
090.0		11521	60.60 11521		09.09	3.20 60.60	0.60 3.20 60.60	2.4/1.8 0.60 3.20 60.60
0.0470		14651	69.40 14651		05.69	3.40 69.40	0.70 3.40 69.40	2.6/2.0 0.70 3.40 69.40
7	2.0		- 504	1,40	04.70	0.70	2.5/2.0	0,000

3.5 CORE COPPER PVC ARMOURED POWER CABLES

Nominal Dimensions of Armour

Thickness of PVC insulation (Nom.)

Min No. of Wires

No. of cores & cross sectional area

V1/V/V		,,,			α (^ /	1 40	1 // 0	1 / 0	α // α	7 7 7 7	177.1	2007.	1 427	0 007	000	120	00
1/1/1	3.5CX35/16	9/9	1.2/1.0	D.3	4×0.0	_	_)	_	-		0.027	0.07	0.70	7	
YWY/YFY	3.5CX50/25	9/9	1.4/1.2	0.3	4×0.8	1.60	1.56	1.56	28.4	30.0	2313 26	2606 0.387	0.463	0.094	1.02	145	125
YWY/YFY	3.5CX70/35	12/6	1.4/1.2	7.0	4×0.8	2.00	1.56	1.56	32.5	34.9	3113 36	3657 0.268	0.321	0.090	1.18	175	150
YWY/YFY	3.5CX95/50	15/6	1.6/1.4	9.0	8.0X4	2.00	1.56	1.72	36.2	38.9 4	4115 47	4756 0.193	0.231	0.090	1.20	210	175
YWY/YFY	3.5C×120/70	18/12	1.6/1.4	0.5	4×0.8	2.00	1.72	1.88	39.3	42.1	5125 58	5827 0.153	0.184	0.087	1.31	240	195
YWY/YFY	3.5C×150/70	18/12	1.8/1.4	0.5	4×0.8	2.00	1.88	1.88 4	44.00	46.4	39 2609	6825 0.124	0.149	0.087	1.31	270) 225
YWY/YFY	3.5C×185/95	30/15	2.0/1.6	0.5	4×0.8	2.50	2.04	2.04	48.8	52.2	7595 87	8799 0.0991	0.120	0.087	1.31	300	255
YWY/YFY	3.5Cx240/120	34/18	2.2/1.6	9.0	4×0.8	2.50	2.20	2.36	55.2	58.9	9738 11	11128 0.0754	0.0912	0.087	1.34	345	5 295
YWY/YFY	3.5C300/150	34/18	2.4/1.8	9.0	4×0.8	3.15	2.36	2.52	59.7	64.7	11945 14	14064 0.0601	0.0739	0.086	1.41	385	335
YWY/YFY	3.5Cx400/185	53/30	2.6/2.0	0.7	4×0.8	3.15	2.68	2.68	9.89	73.3 1	15139 17	17523 0.0470	0.0592	0.086	1.45	425	360
Туре	No. of	Mi			Min.	Nominal		Overall	Net Wt.		Max.D.C.			Approx.	CURRE	CURRENT RATINGS	INGS
	cores & cross sectional	No. of Wires	of PVC insulation s (Nom.)		Thickness of PVC	Thickness of PVC Outer Sheath		Diameter (Approx.)	of Cable (Approx.)		Resistance at 20°C	at 70°C	Reactance C at 50 Hz	Capacitance	Direct in Ground	In Duct	In Air
	area				Sheath	(mm)		[##]	Ka/Km		Ohms/Km	Ohms/Km	Ohms/Km	mEd/Km	Amns	Amne	Amns
≿	3.5Cx25/16	9/9	-		0.30	2.00		24.00	1248		0.73		0.097	0.86	66	81	90
≿	3.5Cx35/16	9/9	1.2/1.0	0.	0.30	2.00		25.00	1541	1,1	0.524	0.627	0.097	0.98	120	66	110
≽	3.5C×50/25	9/9	1.4/1.2	2.	0:30	2.00		28.30	2058	28	0.387	0.463	0.094	1.02	145	125	135
≿	3.5C×70/35	12/6	1.4/1.2	.2	0.40	2.20		32.80	2845	†2 †2	0.268	0.321	0.090	1.18	175	150	165
≿	3.5CX95/50	15/6	1.6/1.4	7.	0.40	2.20		31.50	3810	01	0.193	0.231	0.090	1.20	210	175	200
≿	3.5CX120/70	18/12	1.6/1.4	7.	0.50	2.40		39.70	4804	74	0.153	0.184	0.087	1.31	240	195	230
≿	3.5C×150/70	18/12	2 1.8/1.4	7.	0.50	2.40		44.00	2699	66	0.124	0.149	0.087	1.31	270	225	265
X	3.5Cx185/95	30/15	5 2.0/1.6	9:	0.50	2.60		48.90	7161	51	0.099	0.1200	0.087	1.31	300	255	305
从	3.5Cx240/120	34/18	8 2.2/1.6	9:	09.0	3.00		26.00	9340	,0 †0	0.075	0.0912	0.087	1.34	345	295	355
X	3.5Cx300/150	34/18	8 2.4/1.8		09.0	3.20		99.09	11521	21	090.0	0.0739	980.0	1.41	385	335	400
<u>}</u>	3 5Cx/00/185	F3/30	0 0/		0												

3.5 CORE ALUMINIUM PVC ARMOURED POWER CABLES

& UNARMOURED POWER CABLES

							(Č	U	N.	A	R.	4/	JL	Jĸ	ΚĒ	D	P	U
Sis	÷	bs									2	0	2	0	വ	0	0	2	Ц
ATING	ct In Air	s Amps	13	18	23	30	40	51	70	98	105	130	155	180	205	240	280	315	275
ENTR	In Duct	Amps	14	18	23	30	39	20	63	77	95	115	140	155	175	200	235	260	000
CURRENT RATINGS	Direct in Ground	Amps	16	21	28	35	97	09	76	92	110	135	165	185	210	235	275	302	200
Approx. Capaci-	tance	mFd/Km	0.140	0.150	0.410	0.470	0.560	0.760	098.0	0.980	1.020	1.180	1.200	1.310	1.310	1.310	1.340	1.410	1 7.50
Approx. Reactance	at 50 Hz	0hms/Km	0.126	0.119	0.116	0.110	0.100	0.097	0.097	0.097	0.094	0.090	0.090	0.087	0.087	0.087	0.087	980.0	7000
Max. A.C. Resistance	at 70°C	0hms/Km	21.72	14.52	8.89	5.53	3.70	2.29	1.44	1.04	0.77	0.53	0.38	0:30	0.25	0.20	0.15	0.12	000
Max. D.C. Resistance	at 20°C	Ohms/Km	18.10	12.10	7.41	4.61	3.08	1.91	1.20	0.868	0.641	0.443	0.320	0.253	0.206	0.164	0.125	0.100	0770
RED	Net Wt. of Cable (Approx.)	Kg/Km	210	270	340	420	510	553	728	988	1187	1505	1997	2390	2885	3615	4587	5716	7157
UNARMOURED	Overall Diameter (Approx.)	(mm)	11.70	13.20	15.00	16.00	19.00	22.40	23.80	26.10	30.60	33.70	38.60	41.70	45.10	50.80	57.20	64.10	71 50
N O N	Nom. Thickness of Outer	Sheath (mm)	1.80	1.80	1.80	1.80	1.80	2.00	2.00	2.00	2.20	2.20	2.40	2.40	2.60	2.80	3.00	3.40	07 6
	x. Net Cable	Wire (kg/km)	470	260	675	800	1030	996	1165	1396	1935	2326	2948	3453	4387	5245	9442	8376	10107
	Approx. Net Wt. of Cable	Strip kg/km]	1		ı	ı	800	727	915	1097	1432	1781	2311	2762	3246	3982	5038	6109	74.0 1012/
	all eter ox.)	Wire (mm)	14.5	16.0	17.5	19.0	23.0	23.8	25.2	27.8	32.7	35.8	40.6	44.1	48.4	53.8	60.1	0.89	75.2
ARMOURED	Overall Diameter (Approx.)	Strip (mm)			ı	ı	21.5	22.2	23.6	25.9	30.3	33.4	38.2	41.7	44.7	50.1	26.7	62.9	7 04
RMO	kness Outer ith	Wire (mm)	1.24	1.24	1.24	1.24	1.40	1.40	1.40	1.56	1.56	1.56	1.72	1.88	2.04	2.20	2.36	2.68	700
₽	Min. Thickness of PVC Outer Sheath	Strip (mm)				,	1.40	1.40	1.40	1.40	1.56	1.56	1.72	1.88	1.88	2.04	2.36	2.52	700
		Wire (mm)	1.40	1.40	1.40	1.40	1.60	1.60	1.60	1.60	2.00	2.00	2.00	2.00	2.50	2.50	2.50	3.15	2 1 5
	Nominal Dimensions of Armour	Strip (mm)				,	4X0.8	4X0.8	4X0.8	4X0.8	4X0.8	0 0 7 7							
Min. Thickness	of PVC Inner Sheath	(mm)	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	9.0	9.0	9.0	0.5	0.5	9.0	9.0	0.7	7.0
Thickness of PVC	_	(mm)	8.0	6.0	1.0	1.0	1.0	1.0	1.2	1.2	1.4	1.4	1.6	1.6	1.8	2.0	2.2	2.4	7 6
N Air	of Wires		-	-	-	-	-	9	9	9	9	12	15	15	15	30	30	30	2
No. of cores	& cross sectional area		4CX1.5	4CX2.5	4CX4	4CX6	4CX10	4CX16	4CX25	4CX35	4CX50	4CX70	4CX95	4CX120	4CX150	4CX185	4CX240	4CX300	00//0/

4 CORE COPPER PVC ARMOURED

& UNARMOURED POWER CABLES

35	In Duct	Amps	17	24	30	38	20	94	_	66	125	150	175	195	225	255	295	335	0,0	
CURRENT RATINGS									8			`							2 360	
ENT	n In Air	Amps	17	24	30	39	22	99	90	110	135	165	200	230	265	302	355	400	455	
CURR	Direct in Ground	Amps	21	27	36	45	09	77	66	120	145	175	210	240	270	300	345	385	425	
Approx. Capaci-	tance	mFd/Km	0.14	0.15	0.41	0.47	0.56	0.76	98.0	0.98	1.02	1.18	1.20	1.31	1.31	1.31	1.34	1.41	1.45	
Approx. Reactance	at 50 Hz	0hms/Km	0.126	0.119	0.116	0.110	0.100	0.097	0.097	0.097	0.094	0.090	0.090	0.087	0.087	0.087	0.087	980.0	0.086	
Max. A.C. Resistance	at 70°C	Ohms/Km	14.5	8.87	5.52	3.69	2.19	1.38	0.87	0.62	0.46	0.32	0.23	0.18	0.14	0.12	0.091	0.073	0.059	
Max. D.C. Resistance	at 20°C	Ohms/Km	12.1	7.4	4.6	3.1	1.8	1.2	0.727	0.524	0.387	0.268	0.193	0.153	0.124	0.0991	0.0754	0.0601	0.0470	
SED .	Net Wt. of Cable (Approx.)	Kg/Km	256	335	977	576	773	940	1342	1744	2347	3183	4330	5330	6511	8152	10557	13218	16729	
UNARMOURED	Overall Diameter (Approx.)	(mm)	11.70	13.20	15.00	16.00	19.00	22.40	23.80	26.10	30.60	33.70	38.60	41.70	45.10	50.80	57.20	64.10	71.50	
N O N	Nom. Thickness of Outer	Sheath (mm)	1.80	1.80	1.80	1.80	1.80	2.00	2.00	2.00	2.20	2.20	2.40	2.40	2.60	2.80	3.00	3.40	3.60	
	r. Net Cable	Wire kg/km)	503	616	771	647	1273	1352	1779	2254	3096	4015	5280	6383	8012	9782	12415	15877	19697	
	Approx. Net Wt. of Cable	Strip kg/km)(,			,	1045	1113	1529	1955	2593	3459	4643	5702	6872	8519	11008	13610	17213	
	all ter ox.)	Wire (mm) (14.5	16.0	17.5	19.0	23.0	23.8	25.2	27.8	32.7	35.8	9.04	44.1	48.4	53.8	60.1	0.89	75.3	
JRED	Overall Diameter (Approx.)	Strip (mm)		,	,	,	21.5	22.2	23.6	25.9	30.3	33.4	38.2	41.7	44.7	50.1	56.7	62.9	9.07	
ARMOUR	kness Juter th	Wire (mm)	1.24	1.24	1.24	1.24	1.40	1.40	1.40	1.56	1.56	1.56	1.72	1.88	2.04	2.20	2.36	2.68	2.84	
∢	Min. Thickness of PVC Outer Sheath	Strip (mm)			,	,	1.40	1.40	1.40	1.40	1.56	1.56	1.72	1.88	1.88	2.04	2.36	2.52	2.84	
		Wire (mm)	1.40	1.40	1.40	1.40	1.60	1.60	1.60	1.60	2.00	2.00	2.00	2.00	2.50	2.50	2.50	3.15	3.15	
	Nominal Dimensions of Armour	Strip (mm)			,	,	4X0.8	4X0.8	4X0.8	4X0.8	4X0.8	4X0.8								
Min. Thickness	of PVC Inner Sheath	(mm)	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.4	0.5	0.5	9.0	9.0	0.7	0.7	
Thickness of PVC T	_	(mm)	8.0	6.0	1.0	1.0	1.0	1.0	1.2	1.2	1.4	1.4	1.6	1.6	1.8	2.0	2.2	2.4	2.6	
Ε ο	v		-	-	-	-	9	9	9	9	9	12	15	18	18	30	34	34	53	
No. of	,, , ,		4CX1.5	4CX2.5	4CX4	4CX6	4CX10	4CX16	4CX25	4CX35	4CX50	4CX70	4CX95	4CX120	4CX150	4CX185	4CX240	4CX300	4CX400	

CURRENT RATINGS (XLPE)

Basic assumption and conditions of installation:

Max. Conductor Temperature at Continuous Operation	90°C
Ambient Air Temperature	
Ground Temperature	
Thermal resistivity of Soil	150°C Cm/Watt
Depth of Laying	750mm
Max. Conductor Temperature for Short Circuit	250°C

Rating factors for variation in Ground Temperature : 🖛

Ground temperature °C	15	20	25	30	35	40
Rating factor	1.12	1.08	1.03	1.0	0.96	0.91

Rating factors for variation in Ambient Air Temperature 🖝

Ground temperature °C	25	30	35	40	45	50
Rating factor	1.14	1.10	1.04	1.00	0.95	0.90

Rating factors for cables laid directly in ground in Horizontal Formation

No of cobles		Distance	of cables	
No. of cables	Touching	15 cm	30 cm	45 cm
2 cables	0.79	0.82	0.87	0.90
3 cables	0.69	0.75	0.79	0.83
4 cables	0.62	0.69	0.74	0.79
5 cables	0.58	0.65	0.72	0.76
6 cables	0.54	0.61	0.69	0.75

Rating factors for variation in Depth of Laying in Ground 🖝

Donath of loving		Size	
Depth of laying	Upto 25 mm2	25 to 300 mm ²	Above 300 mm ²
75cm	1.00	1.00	1.00
90cm	0.99	0.98	0.97
105cm	0.98	0.97	0.96
120cm	0.97	0.96	0.95
150cm	0.96	0.94	0.92
180cm	0.95	0.93	0.91

1 CORE ALUMINIUM XLPE ARMOURED

& UNARMOURED POWER CABLES

Overall Ap- Thick- Nom. Over- Approx. Diame- Net XLPE ness Diam- Nt. of insula- of eter Cable tion Outer (Ap- Cable tion Outer (Ap- (Kg/ (Nom.) Sheath prox) Km) (mm) (mm)
0.7 1.8 7.5 60
0.7 1.8 8.0 65
0.7 1.8 8.0 70
0.7 1.8 8.5 75
0.7 1.8 9 80
0.7 1.8 9.5 90
13.0 220 0.7 1.8 10.0 115
14.1 253 0.90 1.80 11.8 177
15.1 297 0.90 1.80 12.8 215
16.4 358 1.00 1.80 14.1 270
18.2 448 1.10 1.80 15.9 347
20.6 588 1.10 1.80 17.6 438
22.9 701 1.20 1.80 20.3 556
24.0 806 1.40 2.00 21.4 652
26.3 966 1.60 2.00 23.7 795
28.9 1179 1.70 2.00 26.3 991
31.5 1421 1.80 2.00 28.6 1193
35.9 1836 2.00 2.20 32.4 1519
39.3 2232 2.20 2.20 35.8 1887
43.6 2773 2.40 2.20 39.8 2360
50.0 3730 2.60 2.40 46.0 3100
55.9 4411 2.80 2.60 51.0 3735

2 CORE ALUMINIUM XLPE ARMOURED POWER CABLES

& UNARMOURED POWER CABLES

Current Ratings	In Air Amps	70	40	51	21	71	95	126	158	194	249	307	357	411	419	269	629	492	877	1013	1148	1275	
Current	Direct in Ground Amps	97	97	57	22	76	67	125	153	181	217	264	296	333	375	434	7490	256	620	969	758	834	
	Max. A.C. Resistance at 90°c Ohms/	5.90	5.90	3.94	3.94	2.34	1.47	0.930	0.671	0.495	0.343	0.247	0.196	0.159	0.127	0.0965	0.0769	0.0608	0.0468	0.0362	0.0283	0.0225	
	Max. D.C. Resis- tance at 20°c Ohms/ Km	4.61	4.61	3.08	3.08	1.83	1.15	0.727	0.524	0.387	0.268	0.193	0.153	0.124	0.0991	0.0754	0.0601	0.0470	0.0366	0.0283	0.0221	0.0176	
	Approx. Net Wt. of Cable (Kg/ Km)	91	98	115	125	170	220	330	428	554	764	1018	1287	1556	1924	2476	3058	3899	4941	6315	7676	10090	
UNARMOURED	Over- all Diam- eter (Ap- prox)	7.5	8.0	8.0	8.5	9.5	10.0	11.8	12.8	14.1	15.9	17.6	20.3	21.4	23.7	26.3	28.6	32.4	35.8	39.8	46.0	51.0	
UNARM	Nom. Thick- ness of Outer Sheath (mm)	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	2.0	2.0	2.0	2.0	2.2	2.2	2.2	2.4	2.6	
	Thick- ness of XLPE insula- tion (Nom.)	0.7	0.7	0.7	0.7	0.7	0.7	0.90	06.0	1.00	1.10	1.10	1.20	1.40	1.60	1.70	1.80	2.00	2.20	2.40	2.60	2.80	
	Ap- prox. Net Wt. of Cable (Kg/		,		1	245	315	407	511	643	998	1168	1432	1710	2095	7997	3287	4217	5286	6728	8250	10766	
	Overall Diame- ter (Ap- prox) (mm)	,	,	1	1	12.0	13.0	14.1	15.1	16.4	18.2	20.6	22.9	24.0	26.3	28.9	31.5	35.9	39.3	43.6	50.0	55.9	
moured	Min Thick- ness of PVC Outer Sheath (mm)	,	,	,	ı	1.24	1.24	1.24	1.24	1.24	1.24	1.40	1.40	1.40	1.40	1.40	1.56	1.56	1.56	1.72	1.88	2.04	
und Wire Ar	Nominal Dimen- sions of Ar- mour Wire (mm)					1.40	1.40	1.60	1.60	1.60	1.60	1.60	1.60	2.00	2.00	2.00	2.00	2.5	2.00	2.00	2.00	2.5	
minium Ro	Approx. Net Wt. of Cable (Kg/ Km)											1150	1400	1680	2040	2580	3200	4200	5180	6425	8100	10150	
Aluminium Strip/Aluminium Round Wire Armoured	Overall Diameter (Approx) (mm)											21.0	22.0	23.0	25.0	27.5	30.0	34.0	37.5	40.5	46.5	54.0	
Alumini	Mini- mum Thick- ness of PVC Outer Sheath											1.40	1.40	1.40	1.40	1.40	1.56	1.56	1.56	1.72	1.72	1.88	~
	Nominal Dimen- sions of Alu- minium Flat Strip. (mm)											4×0.8	4×0.8	4×0.8	4×0.8	4×0.8	4×0.8	4×0.8	4×0.8	4×0.8	4×0.8	4×0.8	₹/UNAF
	Thick- ness of XLPE insu- lation (Nom.)		,	,	,	1.0	1.0	1.20	1.20	1.30	1.40	1.40	1.50	1.70	1.90	2.00	2.10	2.40	2.60	2.80	3.10	3.30	RE/AF
	Min. No. of wires	-	9	_	9	9	9	9	9	9	12	15	18	18	30	34	34	53	53	53	53	53	E COI
	No. of cores & cross sectional area (No. x Sqmm)	1C x 4	1C x 4	1C x 6	1C x 6	1C x 10	1C x 16	1C x 25	1C x 35	1C x 50	1C × 70	1C x 95	1C x 120	1C x 150	1C x 185	1C x 240	1C x 300	1C x 400	1C x 500	1C x 630	1C x 800	1C x 1000	LT SINGLE CORE/AR/UNAR

ables	
CLaser Cables	
g g	
100	
-	

Type	No. of		Thickness	Min.	Nominal		Min. Thickness	ckness	Overall	rall	Appro	Approx. Net	Max. D.C.	Max. A.C.	Approx.	Approx.	CURRENT	CURRENT RATINGS
~ ~ ~	& cross	of i	insulation (Nom)	of PVC	of Armour	nour	Sheath	ath	(Approx.)	rox.)	3	2000	at 20°C			tance	Direct in	In Air
			m m		Strip	Wire	Strip	Wire	Strip	Wire	Strip (Ka/Km)	Wire [Ka/Km]	Ohms/Km	Ohms/Km	Ohms/Km	mFd/Km	Amps	Amps
A2XWY 2	2CX4	-	0.7			1.40		1.24	,	14.9	*	482	7.4100	9.4800	0.0927	0.22	43	39
A2XWY 2	2CX4	9	0.7	0.3		1.40		1.24	,	15.5	1	909	7.4100	9.4800	0.0927	0.22	43	39
A2XWY 2	2CX6	-	0.7	0.3		1.40		1.24		16.0	1	240	4.6100	5.9000	0.0884	0.25	22	20
A2XWY 2	2CX6	9	0.7	0.3		1.40		1.24	,	16.6	,	561	4.6100	5.9000	0.0884	0.25	55	50
A2XWY 20	2CX10	-	0.7	0.3		1.40		1.24		17.7	'	920	3.0800	3.9400	0.0837	0.31	71	29
A2XWY 20	2CX10	9	0.7	0.3		1.40		1.24	,	18.5	,	969	3.0800	3.9400	0.0837	0.31	71	. 67
A2XWY 20	2CX16	9	0.7	0.3	,	1.40	,	1.4	,	18.8	,	673	1.9100	2.4400	0.0808	0.36	91	88
A2XWY/A2XFY 20	2CX25	9	0.90	0.3	4X0.8	1.60	1.40	1.40	19.6	21.2	582	797	1.2000	1.5400	0.080	0.20	120	117
A2XWY/A2XFY 20	2CX35	9	0.90	0.3	4X0.8	1.60	1.40	1.40	20.6	22.2	999	880	0.8480	1.1100	0.080	0.23	143	145
A2XWY/A2XFY 20	2CX50	9	1.00	0.3	4X0.8	1.60	1.40	1.40	22.7	24.3	808	1056	0.6410	0.8200	0.078	0.24	167	176
A2XWY/A2XFY 20	2CX70	12	1.10	0.3	4X0.8	1.60	1.56	1.56	25.5	27.1	1013	1287	0.4430	0.5670	0.077	0.26	204	221
A2XWY/A2XFY 20	2CX95	15	1.10	9.0	4X0.8	2.00	1.56	1.56	28.4	30.8	1255	1738	0.3200	0.4100	0.074	0.29	245	271
A2XWY/A2XFY 2C	2CX120	15	1.20	0.4	4X0.8	2.00	1.56	1.56	30.3	32.7	1464	1967	0.2530	0.3250	0.072	0.29	278	316
A2XWY/A2XFY 2C	2CX150	15	1.40	0.4	4X0.8	2.00	1.72	1.72	33.8	36.2	1754	2334	0.2060	0.2650	0.072	0.29	315	362
A2XWY/A2XFY 2C	2CX185	30	1.60	0.5	4X0.8	2.00	1.72	1.88	37.1	39.9	2105	2763	0.1640	0.2110	0.072	0.29	356	420
A2XWY/A2XFY 2C	2CX240	30	1.70	0.5	4X0.8	2.50	1.88	2.04	40.2	43.9	2556	3568	0.1250	0.1620	0.072	0.31	407	497
A2XWY/A2XFY 2C	2CX300	30	1.80	9.0	4X0.8	2.50	2.04	2.20	45.8	49.5	3102	4273	0.1000	0.1300	0.071	0.33	463	578
A2XWY/A2XFY 2C	2CX400	53	2.00	9.0	4X0.8	2.50	2.36	2.36	50.0	54.0	4230	2600	0.0778	0.1023	0.070	0.33	528	829

CLaser Ca

Туре	No. of cores	ΞZ	Thickness	Min.	Nominal	lominal	Min. Thickness	ckness	Overall	Overall	Approx. Net	Approx. Net	Max. D.C.	Max. A.C.	Approx.	Approx.	CURRENT	CURRENT RATINGS
	sectional	of Wires	insulation (Nom)	of PVC	of Arr	Armour	Sheath	ath	(App	(Approx.)			at 20°C	at 90°C	at 50 Hz	tance	Direct in	In Air
			(mm)	Sheath	Strip	Wire	Strip	Wire	Strip	Wire	Strip (Kg/Km)	Wire (Ka/Km)	Ohms/Km	0hms/Km	0hms/Km	mFd/Km	Amos	Amps
2XWY	2CX4	-	0.7	0.3	1	1.4	,	1.24		14.9	1		4.6100	5.9000	0.0927	0.22	26	51
2XWY	2CX4	9	0.7	0.3	,	1.4		1.24	,	15.5	1	555	4.6100	5.9000	0.0927	0.22	26	51
2XWY	2CX6	_	0.7	0.3	,	1.4	,	1.24		16.0	ı	614	3.0800	3.9400	0.0884	0.25	71	99
2XWY	2CX6	9	0.7	0.3	,	1.4	,	1.24	,	16.6	ı	639	3.0800	3.9400	0.0884	0.25	71	99
2XWY	2CX10	9	0.7	0.3	,	1.4	,	1.24	,	18.5	ı	817	1.8300	2.3400	0.0837	0.31	92	88
2XWY	2CX16	9	0.7	0.3	,	1.4	,	1.40	,	18.8	ı	998	1.1500	1.4700	0.0808	0.36	116	113
2XWY/2XFY	2CX25	9	0.90	0.3	4X0.8	1.60	1.40	1.40	19.6	21.2	889	1103	0.7270	0.9300	0.0800	0.20	157	153
2XWY/2XFY	2CX35	9	0.90	0.3	4X0.8	1.60	1.40	1.40	20.6	22.2	1093	1309	0.5240	0.6710	0.080.0	0.23	180	186
2XWY/2XFY	2CX50	9	1.00	0.3	4X0.8	1.60	1.40	1.40	22.7	24.3	1379	1626	0.3870	0.4950	0.0780	0.24	218	226
2XWY/2XFY	2CX70	12	1.10	0.3	4X0.8	1.60	1.56	1.56	25.5	27.1	1852	2126	0.2680	0.3430	0.0770	0.26	264	284
2XWY/2XFY	2CX95	15	1.10	0.4	4X0.8	2.00	1.56	1.56	28.4	30.8	2422	2904	0.1930	0.2470	0.0740	0.29	314	348
2XWY/2XFY	2CX120	18	1.20	0.4	4X0.8	2.00	1.56	1.56	30.3	32.7	2933	3436	0.1530	0.1960	0.0720	0.29	357	402
2XWY/2XFY	2CX150	18	1.40	0.4	4X0.8	2.00	1.72	1.72	33.8	36.2	3571	4150	0.1240	0.1590	0.0720	0.29	403	461
2XWY/2XFY	2CX185	30	1.60	0.5	8.0X4	2.00	1.72	1.88	37.1	39.9	4373	5032	0.0991	0.1270	0.0720	0.29	453	533
2XWY/2XFY	2CX240	34	1.70	0.5	4X0.8	2.50	1.88	2.04	40.2	43.9	5541	6553	0.0754	0.0965	0.0720	0.31	518	633
2XWY/2XFY	2CX300	34	1.80	9.0	4X0.8	2.50	2.04	2.20	45.8	49.5	9824	8024	0.0601	0.0769	0.0710	0.33	583	732
VAXC/V/MXC	00%	CL	c	ò	0	C	ò	ò	C L	ì	0	0	0				-	

2C/AR

.

1113 153 186 226 226 284 402 402 461 533 633 841

2 CORE COPPER XLPE UNARMOURED POWER CABLES

2C/UNAR

Min. Thickness		۵	lominal nensior	_	Min. Thickness of PVC Outer		Overall Diameter		Approx. Net Wt. of Cable		Max. D.C. Resistance	Max. A.C. Resistance	Approx. Reactance	Approx. Capaci-	CURRENT	CURRENT RATINGS
of Armour	of Armour				Sheath		(Approx.)	3			at 20°C	at 90°C	at 50 Hz	tance	Direct in Ground	In Air
Strip Wire	Strip Wire	Wire			Strip Wire		Strip M	Wire 5	Strip Wire		Ohme/km	Ohme/Km	Ohme/Km	mEd/Km	Amne	V C
'	'		4		\vdash	1	1-		1	-	4.6100	5.9000	0.0927	0.22	77	40
0.3 - 1.4	1		4	Ľ	1.24		-	16.1	1	298	4.6100	5.9000	0.0.927	0.22	77	70
0.3 - 1.4	1		4	Ĺ	- 1.24		_	16.6	1	673	3.0800	3.9400	0.0884	0.25	52	51
0.3 - 1.4	,	1.4	4	Ĺ	- 1.24		_	17.4	-	269	3.0800	3.9400	0.0884	0.25	52	51
0.3 - 1.4	1		4	Ĺ	1.2	1.24	-	19.9	1	922	1.8300	2.3400	0.0837	0.31	73	70
0.3 4X0.8 1.60	4X0.8		99		1.24 1.40		17.8 1	19.7	885 1	1112	1.1500	1.4700	0.0808	0.36	67	06
0.3 4X0.8 1.60	4X0.8		90		1.40 1.40		20.1 2	21.7	1230 1	1450	0.7270	0.9300	0.080.0	0.20	125	122
0.3 4X0.8 1.60	4X0.8		90	<u>-</u>	1.40 1.40		22.2 2	23.8	563	1803	0.5240	0.6710	0.0800	0.23	148	148
0.3 4X0.8 1.60	4X0.8		90	<u> </u>	1.40 1.56		24.6 2	26.5	1980 2	2272	0.3870	0.4950	0.0780	0.24	175	181
0.4 4X0.8 2.00	4X0.8		00	<u>–</u>	1.56 1.5	1.56 28	28.9 3	31.3 2	2730 3	3266	0.2680	0.3430	0.0770	0.26	213	230
0.4 4X0.8 2.00	4X0.8		00	<u> </u>	1.56 1.56		31.1 3	33.5	3521 4	4092	0.1930	0.2470	0.0740	0.29	254	284
0.4 4X0.8 2.00	4X0.8		00	<u>—</u>	1.56 1.72		35.7 3	38.4 4	4358 5	5033	0.1530	0.1960	0.0720	0.29	292	330
0.5 4X0.8 2.00	4X0.8		00		1.72 1.88		39.2 4	42.0	5263 6	6709	0.1240	0.1590	0.0720	0.29	325	375
0.5 4X0.8 2.50	4X0.8		20	<u></u>	1.88 2.04		43.3 4	47.0 6	6503 7	7713	0.0991	0.1270	0.0720	0.29	366	434
0.6 4X0.8 2.50	4X0.8		20	2.	2.04 2.20		46.3 5	50.0	8278 9	0096	0.0754	0.0965	0.0720	0.31	421	515
0.6 4X0.8 2.50	4X0.8		20		2.20 2.36		51.6 5	55.3	10191	11628	0.0601	0.0769	0.0710	0.33	472	588
0.7 4X0.8 3.15	0	_	7	_	250 248	_	58 / 6	1 2 2 7	12950 15	15220	0.770	0.0402	0.070	0.33	528	677

LT/3C/AR

LASER POWER & INFRA

3 CORE COPPER XLPE UNARMOURED POWER CABLES

Туре	No. of cores	Σ×	Thickness Min.	Min.	Nominal	inal	Min. Thickness	ckness	Overall	rall	Appro	Approx. Net	Max. D.C.	Max. A.C.	Approx.	Approx.	CURRENT RATINGS	RATINGS
	sectional	of Wires	insulation	of PVC Inner	of Arr	nour	Sheath	ath	(Approx.)	rox.)	;		at 20°C		at 50 Hz	tance	Direct in Ground	In Air
				Sheath	Strip	Wire	Strip	Wire	Strip	Wire	Strip	Wire						
			(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(Kg/Km)	(Kg/Km) (Kg/Km)	0hms/Km	Ohms/Km Ohms/Km Ohms/Km	0hms/Km	mFd/Km	Amps	Amps
A2XWY/A2XFY 3.5Cx25	3.5Cx25	9/9	0.9/0.7	0.3	8.0X4	1.60	1.40	1.40	22.2	23.8	760	666	1.2000	1.5400	080.0	0.70	67	9.2
A2XWY/A2XFY	3.5Cx35	9/9	0.9/0.7	0.3	8.0X4	1.60	1.40	1.40	23.9	25.5	882	1146	0.8480	1.1100	0.080	0.23	116	117
A2XWY/A2XFY	3.5Cx50	9/9	1.0/0.9	0.3	8.0X4	1.60	1.40	1.56	27.1	29.0	1114	1427	0.6410	0.8200	0.078	0.24	134	140
A2XWY/A2XFY	3.5Cx70	12/6	1.1/0.9	9.0	8.0X4	2.00	1.56	1.56	31.6	34.0	1473	2006	0.4430	0.5670	0.077	0.26	167	176
A2XWY/A2XFY	3.5Cx95	15/6	1.1/1.0	9.0	8.0X4	2.00	1.56	1.56	35.2	37.6	1834	2436	0.3200	0.4100	0.074	0.29	199	221
A2XWY/A2XFY 3.5Cx120	3.5Cx120	15/12	1.2/1.1	9.0	8.0X4	2.00	1.72	1.72	37.8	40.2	2220	2863	0.2530	0.3250	0.072	0.29	227	258
A2XWY/A2XFY 3.5Cx150 15/12	3.5Cx150	15/12	1.4/1.1	0.5	8.0X4	2.00	1.72	1.88	42.4	45.2	2623	3378	0.2060	0.2650	0.072	0.29	255	294
A2XWY/A2XFY 3.5Cx185 30/15	3.5Cx185		1.6/1.1	0.5	8.0X4	2.50	1.88	2.04	0.94	49.7	3179	4339	0.1640	0.2110	0.072	0.29	287	339
A2XWY/A2XFY 3.5Cx240 30/15	3.5Cx240	30/15	1.7/1.2	9.0	8.0X4	2.50	2.04	2.20	51.7	55.4	3981	5298	0.1250	0.162	0.072	0.31	333	402
A2XWY/A2XFY 3.5Cx300 30/15	3.5Cx300	30/15	1.8/1.4	9.0	8.0X4	2.50	2.20	2.36	97.9	59.3	4750	6172	0.1000	0.1300	0.071	0.33	375	461
A2XWY/A2XFY 3.5Cx400 53/30 2.0/1.6	3.5Cx400	53/30	2.0/1.6	0.7	4X0.8	3.15	2.52	2.68	64.1	69.2	0809	8341	0.0778	0.1023	0.070	0.33	426	542

LASER POWER & INFRA

176 221 258 294 294 402 402 461 542

LASER POWER & INFRA

Laser Cables

Туре	No. of	Ξ N	Thickness	Min. Thickness	Nor Dime	Nominal primensime	Nominal Min. Thickness Dimensions of PVC Outer	kness	Overall Dia meter	-all	Approx. Net	c. Net	Max. D.C.	Max. A.C.	Approx.	Approx.	CURRENT	CURRENT RATINGS
	& cross	of Wires	E _	of PVC Inner	of Aı	of Armour	Sheath	£	(Approx.)	.ox.)			at 20°C	at 90°C	at 50 Hz	tance	Direct in Ground	In Air
	area		Œ	Sheath	Strip	Wire	Strip	Wire	Strip	Wire	Strip Wire	Wire	Ohms/Km	Ohms/Km	Ohm <th>mEd/Km</th> <th>Amns</th> <th>Amns</th>	mEd/Km	Amns	Amns
2XWY/2XFY	3.5CX25/16	9/9	0.9/0.7	0.3	4X0.8	1.60	1.40	1.40	22.2	23.8	1316	1556	0.727	0.930	0.080	0.20	125	122
2XWY/2XFY	3.5CX35/16	9/9	0.9/0.7	0.3	4X0.8	1.60	1.40	1.40	23.9	25.5	1626	1887	0.524	0.671	0.080	0.23	148	148
2XWY/2XFY	3.5CX50/25	9/9	1.0/0.9	0.3	4X0.8	1.60	1.40	1.56	27.1	29.0	2137	2627	0.387	0.495	0.078	0.24	175	181
2XWY/2XFY	3.5CX70/35	12/6	1.1/0.9	9.0	4X0.8	2.00	1.56	1.56	31.6	34.0	2946	3479	0.268	0.343	0.077	0.26	213	230
2XWY/2XFY	3.5CX95/50	15/6	1.1/1.0	9.0	4X0.8	2.00	1.56	1.56	35.2	37.6	3874	4476	0.193	0.247	0.074	0.29	254	284
2XWY/2XFY	3.5CX120/70	18/12	1.2/1.1	9.0	4X0.8	2.00	1.72	1.72	37.8	40.2	7847	5487	0.153	0.196	0.072	0.29	292	330
2XWY/2XFY	3.5CX150/70	18/15	1.4/1.1	0.5	4X0.8	2.00	1.72	1.88	42.4	45.2	5768	6523	0.124	0.159	0.072	0.29	325	375
2XWY/2XFY	3.5CX185/95	30/15	1.6/1.1	0.5	4X0.8	2.50	1.88	2.04	0.94	49.7	7164	8325	0.0991	0.127	0.072	0.29	366	434
2XWY/2XFY	3.5CX240/120	34/18	1.7/1.2	9.0	4X0.8	2.50	2.04	2.20	51.7	55.4	9193	10510	0.0754	0.0965	0.072	0.31	421	515
/Y/2XFY	2XWY/2XFY 3.5CX300/150	34/18	1.8/1.4	9.0	4X0.8	2.50	2.20	2.36	55.6	59.3	11282	12705	0.0601	0.0769	0.071	0.33	472	588
/Y/2XFY	2XWY/2XFY 3.5CX400/185	53/30	2.0/1.6	0.7	4X0.8	3.15	2.52	2.68	64.1	69.2	14342 16653	16653	0.0470	0.0602	0.070	0.33	528	677

- 1.40 1.40 1.40 1.56 1.56 1.56 1.56 1.56 2.04 2.20

> 4Cx150 4Cx150 4Cx185 4Cx185 4Cx300 4Cx300

- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
- 1.40
-

C LASER

122 148 181 181 181 181 183 330 335 434 434 434 434 677

o i e s
Laser Cables

No. of Amin Thickness No. Cores Min Thickness	CURRENT Direct in Ground	Amps	34	34	43	43	22	57	73	64	116	134	167	199	227	255	287	333	375	426
Min of insulation of insulation of insulation in contracts insulation of insu	Approx. Capaci- tance	mFd/Km	0.22	0.22	0.25	0.25	0.31	0.31	0.36	0.20	0.23	0.24	0.26	0.29	0.29	0.29	0.29	0.31	0.33	0.33
Min Officeness (Nom) of insulation of insulation of insulation of insulation of of Other (Approx.) Nom. of of Other of Other of Cable of Cable of Other Of Cable of Other Other of Cable of Other Other Other Other of Other Oth	Approx. Reactance at 50 Hz	0hms/Km	0.0927	0.0927	0.0884	0.0884	0.0837	0.0837	0.0808	0.080.0	0.080.0	0.0780	0.0770	0.0740	0.0720	0.0720	0.0720	0.0720	0.0710	0.0700
Min Thickness Min. of insulation of of Outer (Approx.) Nom. of Outer (Approx.) (Approx.) Neath of Outer (Approx.) Inher of Outer (Approx.) Approx.) Method (Approx.) Net Wt. of Cable of Cable of Outer (Approx.) Approx.) App	Max. A.C. Resistance at at 90°C	Ohms/Km	9.4800	9.4800	5.9000	5.9000	3.9400	3.9400	2.4500	1.5400	1.1100	0.8200	0.5670	0.4100	0.3250	0.2650	0.2110	0.1620	0.1300	0.1023
Min Thickness Min. of insulation of of Outer (Approx.) Nom. Overall of Outer (Approx.)	Max. D.C. Resistance at 20°C	0hms/Km	7.4100	7.4100	4.6100	4.6100	3.0800	3.0800	1.9100	1.2000	0.8480	0.6410	0.4430	0.3200	0.2530	0.2060	0.1640	0.1250	0.1000	0.0778
Min Thickness of insulation (No.) Min. Of insulation of insulation (Nom) Mickness of Outer of Outer (Nom) Nom. of Insulation of insulation (Imm) Nom. of Outer of Outer (Nom) Insulation of Outer (Imm) Insulation (Imm) <th>Net Wt. of Cable (Approx.)</th> <th>Kg/Km</th> <th>257</th> <th>275</th> <th>308</th> <th>325</th> <th>400</th> <th>677</th> <th>457</th> <th>618</th> <th>763</th> <th>796</th> <th>1321</th> <th>1681</th> <th>2103</th> <th>2551</th> <th>3164</th> <th>4067</th> <th>5012</th> <th>6373</th>	Net Wt. of Cable (Approx.)	Kg/Km	257	275	308	325	400	677	457	618	763	796	1321	1681	2103	2551	3164	4067	5012	6373
Min Thickness Min. of insulation of insulation of insulation of insulation (mm) Min. of insulation of insulation of insulation of (mm) Min. of insulation of insulation of insulation of (mm) Inner Sheath (mm) 1 0.7 0.3 0.3 0.3 6 0.7 0.3 0.3 0.3 6 0.7 0.3 0.3 0.3 6 0.7 0.3 0.3 0.3 6 0.7 0.9 0.3 0.3 6 0.7 0.9 0.3 0.3 6 0.9 0.9 0.3 0.4 11 0.4 0.5 0.5 15 1.1 0.4 0.5 15 1.4 0.5 0.5 30 1.6 0.5 0.7 30 1.7 0.6 0.7 30 1.8 0.7 53 2.0 0.7	Overall Dia.meter (Approx.)	(mm)	14.8	15.5	16.0	16.7	17.9	19.6	21.0	22.4	24.6	27.8	32.0	35.5	39.5	43.0	48.3	54.6	9.09	68.3
Min Thickness No. of insulation of insulation (mm) (mm) (mm) 1 0.7 6 0.7 6 0.7 6 0.9 6 0.9 6 0.9 6 0.9 6 0.9 6 1.0 6 1.0 1.1 1.1 1.1 1.5 1.2 1.1 1.5 1.2 1.1 1.5 1.2 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	Nom. Thickness of Outer Sheath	(mm)	1.8	1.8	1.8	1.8	1.8	1.8	1.8	2.0	2.0	2.0	2.2	2.2	2.4	2.6	2.8	3.0	3.2	3.6
Min No.	Min. Thickness of Inner	Sheath (mm)	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.5	0.5	0.5	9.0	0.7	0.7
	Thickness of insulation (Nom)	(mm)	0.7	0.7	0.7	0.7	0.7	0.7	0.7	6.0	6.0	1.0	1.1	1.1	1.2	1.4	1.6	1.7	1.8	2.0
No. of cores cores & cross sectional area 4Cx4 4Cx6 4Cx10 4Cx10 4Cx25 4Cx35 4Cx35 4Cx10 4Cx10 4Cx150 4Cx150 4Cx185 4Cx240 4Cx240 4Cx300 4Cx300	Min No. of Wires		-	9	-	9	—	9	9	9	9	9	12	15	15	15	30	30	30	53
	No. of cores & cross sectional	area	4Cx4	4Cx4	4Cx6	4Cx6	4Cx10	4Cx10	4Cx16	4Cx25	4Cx35	4Cx50	4Cx70	4Cx95	4C×120	4Cx150	4Cx185	4Cx240	4Cx300	4C×400

LASER POWER & INFRA

3_	(Approx.)				at 20°C	at 90°C	at 50 Hz	tance	Direct in Ground	In Air
Vire Strip Wire			\$	ē						
(Kg/Km)	(Kg/Km)		Kg/	Ē	0hms/Km	0hms/Km	0hms/Km	mFd/Km	Amps	Amps
6.5 - 641			99	_	4.6100	5.9000	0.0927	0.22	77	40
7.2 - 679			67	6	4.6100	5.9000	0.0927	0.22	77	07
7.8 - 773			77	m	3.0800	3.9400	0.0884	0.25	22	51
8.5 - 800	,		8	0	3.0800	3.9400	0.0884	0.25	52	51
			=	1146	1.8300	2.3400	0.0837	0.31	73	70
2.8 1149 1381			13	81	1.15	1.47	0.080	0.36	44	06
1536			17	1782	0.727	0.930	0.080	0.20	125	122
6.0 1960 2230			22;	30	0.524	0.671	0.080	0.23	148	148
9.5 2545 2855			28	25	0.387	0.495	0.078	0.24	175	181
4.1 3462 4048			707	8,4	0.268	0.343	0.077	0.26	213	230
7.9 4535 5219			521	6	0.193	0.247	0.074	0.29	254	284
1.9 5623 6373			637	က	0.153	0.196	0.072	0.29	292	330
6.3 6809 7991			199	_	0.124	0.159	0.072	0.29	325	375
1.5 8416 9755	8416		975	Ŋ	0.0991	0.127	0.072	0.29	366	434
7.5 10843 12360	57.5 10843 123	10843 123	123	90	0.0754	0.0965	0.072	0.31	421	515
4.5 13402 15802	64.5 13402 158	13402 158	158	02	0.0601	0.0769	0.071	0.33	472	588
2.1 16889 19582	72.1 16889 195	195	195	82	0.0470	0.0602	0.070	0.33	528	677

4 CORE COPPER XLPE UNARMOURED POWER CABLES

RATINGS	In Air	Amps	40	40	51	51	70	06	122	148	181	230	284	330	375	434	515	588	677
CURRENT RATINGS	Direct in Ground	Amps	77	77	55	52	73	67	125	148	175	213	254	292	325	366	421	472	528
Approx. Capaci-	tance	mFd/Km	0.22	0.22	0.25	0.25	0.31	0.36	0.20	0.23	0.24	0.26	0.29	0.29	0.29	0.29	0.31	0.33	0.33
Approx. Reactance	at 50 Hz	0hms/Km	0.0927	0.0927	0.0884	0.0884	0.0837	0.080.0	0.080.0	0.080.0	0.0780	0.0770	0.0740	0.0720	0.0720	0.0720	0.0720	0.0710	0.0700
Max. A.C. Resistance	at at 90°C	0hms/Km	5.9000	5.9000	3.9400	3.9400	2.3400	1.4700	0.9300	0.6710	0.4950	0.3430	0.2470	0.1960	0.1590	0.1270	0.0965	0.0769	0.0602
Max. D.C. Resistance	at 20°C	0hms/Km	4.6100	4.6100	3.0800	3.0800	1.8300	1.1500	0.7270	0.5240	0.3870	0.2680	0.1930	0.1530	0.1240	0.0991	0.0754	0.0601	0.0470
Net Wt. of Cable	(Approx.)	Kg/Km	356	372	455	472	269	843	1232	1630	2125	3000	4013	5043	6176	7701	10037	12513	15945
Overall Dia.meter	(Approx.)	(mm)	14.8	15.5	16.0	16.7	19.6	21.0	22.4	24.6	27.8	32.0	35.5	39.5	43.0	48.3	54.6	9.09	68.3
Nom. Thickness	of Outer Sheath	(mm)	1.8	1.8	1.8	1.8	1.8	1.8	2.0	2.0	2.0	2.2	2.2	2.4	2.6	2.8	3.0	3.2	3.6
Min. Thickness		(mm)	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.5	0.5	0.5	9.0	0.7	0.7
Thickness of	insulation (Nom)	(mm)	0.7	0.7	0.7	0.7	0.7	0.7	0.9	6.0	1.0	1.1	1.1	1.2	1.4	1.6	1.7	1.8	2.0
	of Wires		_	9	_	9	9	9	9	9	9	12	15	18	18	30	34	34	53
No. of cores & cross	sectional		4CX4	4CX4	4CX6	4CX6	4CX10	4CX16	4CX25	4CX35	4CX50	4CX70	4CX95	4CX120	4CX150	4CX185	4CX240	4CX300	4CX400
Туре			2XY	2XY	2XY	2XY	2XY	2XY	2XY	2XY	2XY	2XY	2XY	2XY	2XY	2XY	2XY	2XY	2XY

ARMOURED PVC CONTROL CABLES- IS: 1554(P-1)-1998

No. of cores	Thickness	Thickness		Strip Armo	ured cabl	e	Wire Amourned cable				Standard	CURRENT	RATINGS
& cross sectional area No.	of PVC Insulation (Nom)	of Inner Sheath (min.) extruded	Strip size	Thickness of PVC Outer Sheath (Min.)	Approx. OD	Approx. Net weight of cable	Round Wire Dia.	Thickness of PVC Outer Sheath (Min.)	Approx. OD	Approx. Net weight of cable	Delivery Length in	Direct in Ground	In Air/ Duct.
mm2	(mm)	(mm)	(mm)	(mm)	(mm)	Kg/Km	(mm)	(mm)	(mm)	Kg/Km	Mtrs.	Amps	Amps
2x1.5	0.8	0.3	-	-	-	-	1.4	1.24	13.6	415	1000	23	20
3x1.5	0.8	0.3	-	-	-	-	1.4	1.24	14.1	430	1000	21	17
4x1.5	0.8	0.3	-	-	-	-	1.4	1.24	15.0	490	1000	21	17
5x1.5	0.8	0.3	-	-	-	-	1.4	1.24	15.9	545	1000	16	14
6x1.5	0.8	0.3	-	-	-	-	1.4	1.24	16.9	605	1000	15	13
7x1.5	0.8	0.3	-	-	-	-	1.4	1.24	16.9	630	1000	14	13
10x1.5	0.8	0.3	-	-	-	-	1.4	1.40	20.6	835	1000	13	11
12x1.5	0.8	0.3	4x0.8	1.24	19.5	760	1.6	1.40	21.5	950	1000	12	10
14x1.5	0.8	0.3	4x0.8	1.40	20.8	830	1.6	1.40	22.4	1040	1000	11	10
16x1.5	0.8	0.3	4x0.8	1.40	21.7	920	1.6	1.40	23.3	1130	1000	11	9
19x1.5	0.8	0.3	4x0.8	1.40	23.1	1040	1.6	1.40	24.7	1265	1000	10	9
24x1.5	0.8	0.3	4x0.8	1.40	26.4	1250	1.6	1.40	28.0	1510	1000	9	8
27x1.5	0.8	0.3	4x0.8	1.40	26.9	1355	1.6	1.40	28.5	1610	1000	9	8
30x1.5	0.8	0.3	4x0.8	1.40	27.8	1430	1.6	1.40	29.4	1700	1000	9	7
37x1.5	0.8	0.3	4x0.8	1.40	29.7	1670	1.6	1.40	31.3	1960	1000	8	7
2x2.5	0.9	0.3	-	-	-	-	1.4	1.24	14.8	500	1000	32	27
3x2.5	0.9	0.3	-	-	-	-	1.4	1.24	15.4	520	1000	27	24
4x2.5	0.9	0.3	-	-	-	-	1.4	1.24	16.4	590	1000	27	24
5x2.5	0.9	0.3	-	-	-	-	1.4	1.24	17.5	660	1000	23	19
6x2.5	0.9	0.3	-	-	-	-	1.4	1.24	18.7	745	1000	21	18
7x2.5	0.9	0.3	-	-	-	-	1.4	1.24	18.7	780	1000	20	17
10x2.5	0.9	0.3	4x0.8	1.40	21.8	900	1.6	1.40	23.4	1110	1000	18	15
12x2.5	0.9	0.3	4x0.8	1.40	22.8	1020	1.6	1.40	24.4	1240	1000	17	14
14x2.5	0.9	0.3	4x0.8	1.40	23.8	1130	1.6	1.40	25.4	1340	1000	16	13
16x2.5	0.9	0.3	4x0.8	1.40	24.9	1210	1.6	1.40	26.5	1455	1000	15	13
19x2.5	0.9	0.3	4x0.8	1.40	26.1	1355	1.6	1.40	27.7	1605	1000	14	12
24x2.5	0.9	0.3	4x0.8	1.40	30.0	1655	1.6	1.56	32.0	1970	1000	13	11
27x2.5	0.9	0.3	4x0.8	1.40	30.6	1770	1.6	1.56	32.6	2100	1000	12	10
30x2.5	0.9	0.3	4x0.8	1.56	32.0	1940	1.6	1.56	33.6	2250	1000	12	10
37x2.5	0.9	0.4	4x0.8	1.56	34.7	2300	2.0	1.56	37.1	2900	1000	11	9

Construction:

- 1. Solid /Stranded Annealed Copper Conductor & Tinned /Bare
- 2. General purpose/ HR PVC insulation
- 3. Cores laid up (filled if needed)
- 4. FRLS/General Purpose PVC Inner sheath
- 5. Armouring round galvanized steel wires/strips
- 6. FRLS/General purpose PVC outer sheath

Max. Conductor D.C. resistance at 20°C-conductor size:

- 1.5 sq.mm 12.1 Ohm/km (Bare), 12.2 Ohm/Km (Tinned)
- 2.5 sq. mm 7.41 Ohms/km (Bare), 7.56 Ohm/km(Tinned)
- * Dimensions specified are with stranded conductor

 \sim 63 \sim

UNARMOURED PVC CONTROL CABLES- IS: 1554(P-1)-1988

No. of cores	Thickness	Thickness	Thickness	Approx.	Approx. Net	Standard	CURRENT	RATINGS
& cross sectional area No.	of PVC Insulation (Nom)	of Inner Sheath (min.)	of PVC Outer Sheath (Min.)	OD	weight of cable	Delivery Length	Direct in Ground	In Air/ Duct.
mm2	(mm)	(mm)	(mm)	(mm)	Kg/Km	In Mtrs.	Amps	Amps
2x1.5	0.8	0.3	1.8	11.8	185	1000	23	20
3x1.5	0.8	0.3	1.8	12.3	190	1000	21	17
4x1.5	0.8	0.3	1.8	13.2	225	1000	21	17
5x1.5	0.8	0.3	1.8	14.1	260	1000	16	14
6x1.5	0.8	0.3	1.8	15.1	295	1000	15	13
7x1.5	0.8	0.3	1.8	15.1	315	1000	14	13
10x1.5	0.8	0.3	1.8	18.4	425	1000	13	11
12x1.5	0.8	0.3	1.8	18.9	480	1000	12	10
14x1.5	0.8	0.3	1.8	19.8	535	1000	11	10
16x1.5	0.8	0.3	1.8	20.7	595	1000	11	9
19x1.5	0.8	0.3	2.0	22.5	720	1000	10	9
24x1.5	0.8	0.3	2.0	25.8	880	1000	9	8
27x1.5	0.8	0.3	2.0	26.3	960	1000	9	8
30x1.5	0.8	0.3	2.0	27.2	1040	1000	9	7
37x1.5	0.8	0.3	2.0	29.1	1230	1000	8	7
2x2.5	0.9	0.3	1.8	13.0	230	1000	32	27
3x2.5	0.9	0.3	1.8	13.6	240	1000	27	24
4x2.5	0.9	0.3	1.8	14.6	290	1000	27	24
5x2.5	0.9	0.3	1.8	15.7	335	1000	23	19
6x2.5	0.9	0.3	1.8	16.9	385	1000	21	18
7x2.5	0.9	0.3	1.8	16.9	420	1000	20	17
10x2.5	0.9	0.3	1.8	20.8	570	1000	18	15
12x2.5	0.9	0.3	2.0	22.2	690	1000	17	14
14x2.5	0.9	0.3	2.0	23.2	775	1000	16	13
16x2.5	0.9	0.3	2.0	24.3	860	1000	15	13
19x2.5	0.9	0.3	2.0	25.5	985	1000	14	12
24x2.5	0.9	0.3	2.0	29.4	1215	1000	13	11
27x2.5	0.9	0.3	2.0	30.0	1330	1000	12	10
30x2.5	0.9	0.3	2.0	31.0	1450	1000	12	10
37x2.5	0.9	0.4	2.2	34.1	1790	1000	11	9

Construction:

- 1. Solid /Stranded Annealed Copper Conductor & Tinned /Bare
- 2. General purpose / HR PVC insulation
- 3. Cores laid up (filled if needed)
- 4. FRLS/General Purpose PVC Inner sheath
- 5. FRLS/General purpose PVC outer sheath

Max. Conductor D.C. resistance at 20°C-conductor size:

- 1.5 sq.mm 12.1 Ohm/km (bare), 12.2 Ohm/Km (Tinned)
- 2.5 sq. mm 7.41 Ohm/km (Bare), 7.56 Ohm/km(Tinned)
- * Dimensions specified are with stranded conductor

ARMOURED XLPE CONTROL CABLES- IS: 7098(P-1)-1988

No. of cores	Thickness	Thickness		Strip Armo	Armoured cable Wire Amourned cable					е	Standard	CURRENT	RATINGS
& cross sectional area No.	of PVC Insulation (Nom)	of Inner Sheath (min.) extruded	Strip size	Thickness of PVC Outer Sheath (Min.)	ÖD	Approx. Net weight of cable	Round Wire Dia.	Thickness of PVC Outer Sheath (Min.)	Approx. OD	Approx. Net weight of cable	Delivery Length in	Direct in Ground	In Air/ Duct.
mm2	(mm)	(mm)	(mm)	(mm)	(mm)	Kg/Km	(mm)	(mm)	(mm)	Kg/Km	Mtrs.	Amps	Amps
2x1.5	0.7	0.3	-	-	-	-	1.4	1.24	13.2	410	1000	33	29
3x1.5	0.7	0.3	-	-	-	-	1.4	1.24	13.6	453	1000	25	22
4x1.5	0.7	0.3	-	-	-	-	1.4	1.24	14.4	503	1000	25	22 •
5x1.5	0.7	0.3	-	-	-	-	1.4	1.24	15.2	507	1000	24	21
6x1.5	0.7	0.3	-	-	-	-	1.4	1.24	16.0	558	1000	22	19
7x1.5	0.7	0.3	-	-	-	-	1.4	1.24	16.0	576	1000	21	18
10x1.5	0.7	0.3	-	-	-	-	1.4	1.24	18.9	746	1000	18	16
12x1.5	0.7	0.3	-	-	-	-	1.4	1.24	19.4	799	1000	17	15
14x1.5	0.7	0.3	-	-	-	-	1.4	1.40	20.5	874	1000	16	14
16x1.5	0.7	0.3	4x0.8	1.40	20.1	816	1.6	1.40	21.7	1021	1000	16	14
19x1.5	0.7	0.3	4x0.8	1.40	21.0	880	1.6	1.40	22.6	1120	1000	15	13
24x1.5	0.7	0.3	4x0.8	1.40	24.3	1102	1.6	1.40	25.9	1357	1000	13	12
27x1.5	0.7	0.3	4x0.8	1.40	24.7	1162	1.6	1.40	26.3	1433	1000	13	11
30x1.5	0.7	0.3	4x0.8	1.40	25.5	1251	1.6	1.40	27.1	1512	1000	12	11
37x1.5	0.7	0.3	4x0.8	1.40	27.2	1425	1.6	1.40	28.8	1724	1000	11	10
44x1.5	0.7	0.3	4x0.8	1.40	30.0	1639	1.6	1.56	32.0	1996	1000	11	9
52x1.5	0.7	0.3	4x0.8	1.56	31.6	1855	1.6	1.56	33.2	2205	1000	10	9
61x1.5	0.7	0.4	4X0.8	1.56	33.3	2092	2.0	1.56	35.7	2687	1000	9	8
2x2.5	0.7	0.3	-	-	-	-	1.4	1.24	14.0	460	1000	39	32
3x2.5	0.7	0.3	-	-	-	-	1.4	1.24	14.5	526	1000	34	30
4x2.5	0.7	0.3	-	-	-	-	1.4	1.24	15.3	602	1000	34	30
5x2.5	0.7	0.3	-	-	-	-	1.4	1.24	16.3	602	1000	31	28
6x2.5	0.7	0.3	-	-	-	-	1.4	1.24	17.2	664	1000	29	26
7x2.5	0.7	0.3	-	-	-	-	1.4	1.24	17.2	692	1000	27	25
10x2.5	0.7	0.3	4x0.8	1.40	19.7	773	1.6	1.40	21.3	987	1000	24	21
12x2.5	0.7	0.3	4x0.8	1.40	22.2	860	1.6	1.40	21.8	1064	1000	22	20
14x2.5	0.7	0.3	4x0.8	1.40	21.2	925	1.6	1.40	22.7	1160	1000	21	19
16x2.5	0.7	0.3	4x0.8	1.40	22.0	1017	1.6	1.40	23.6	1259	1000	20	18
19x2.5	0.7	0.3	4x0.8	1.40	23.4	1157	1.6	1.40	25.0	1406	1000	19	17
24x2.5	0.7	0.3	4x0.8	1.40	26.7	1413	1.6	1.40	28.3	1696	1000	17	16
27x2.5	0.7	0.3	4x0.8	1.40	27.2	1502	1.6	1.40	28.8	1800	1000	16	16
30x2.5	0.7	0.3	4x0.8	1.40	28.0	1622	1.6	1.40	29.6	1912	1000	16	14
37x2.5	0.7	0.3	4x0.8	1.40	30.0	1866	1.6	1.56	32.0	2223	1000	15	13
44x2.5	0.7	0.4	4x0.8	1.56	33.6	2209	2.0	1.56	36.0	2829	1000	14	12
52x2.5	0.7	0.4	4x0.8	1.56	35.0	2475	2.0	1.56	37.4	3119	1000	13	12
61x2.5	0.7	0.4	4x0.8	1.56	36.9	2777	2.0	1.56	39.3	3470	1000	12	11

Construction:

- 1. Solid/Stranded Annealed Copper Conductor & Tinned /Bare
- 2. Cross Linked Polyethylene (XLPE) insulation
- 3. Cores laid up (filled if needed)
- 4. FRLS/General purpose PVC Inner sheath
- 5. Armouring round Galvanised Steel wires/strips
- 6. FRLS/General purpose PVC outer sheath

Dimensions specified are with stranded conductor.

UNARMOURED XLPE CONTROL CABLES- IS: 7098(P-1)-1988

No. of cores	Thickness	Thickness	Thickness	Approx.	Approx. Net	Standard	CURRENT	RATINGS
& cross sectional area No.	of PVC Insulation (Nom)	of Inner Sheath (min.)	of PVC Outer Sheath (Min.)	OD	weight of cable	Delivery Length	Direct in Ground	In Air/ Duct.
mm²	(mm)	(mm)	(mm)	(mm)	Kg/Km	In Mtrs.	Amps	Amps
2x1.5	0.7	0.3	1.8	10.0	140	1000	33	29
3x1.5	0.7	0.3	1.8	10.5	160	1000	25	22
4x1.5	0.7	0.3	1.8	11.5	200	1000	25	22
5x1.5	0.7	0.3	1.8	12.5	225	1000	24	21
6x1.5	0.7	0.3	1.8	13.5	250	1000	22	19
7x1.5	0.7	0.3	1.8	13.5	260	1000	21	18
10x1.5	0.7	0.3	1.8	17.0	340	1000	18	16
12x1.5	0.7	0.3	1.8	17.5	390	1000	17	15
14x1.5	0.7	0.3	1.8	18.0	430	1000	16	14
16x1.5	0.7	0.3	1.8	18.5	475	1000	16	14
19x1.5	0.7	0.3	1.8	19.5	540	1000	15	13
24x1.5	0.7	0.3	2.0	22.5	665	1000	13	12
27x1.5	0.7	0.3	2.0	23.0	750	1000	13	11
30x1.5	0.7	0.3	2.0	23.5	820	1000	12	11
37x1.5	0.7	0.3	2.0	25.0	975	1000	11	10
44x1.5	0.7	0.4	2.0	28.0	1150	1000	11	9
52x1.5	0.7	0.3	2.0	29.0	1300	1000	10	9
61x1.5	0.7	0.4	2.2	31.0	1500	1000	9	8
2x2.5	0.7	0.3	1.8	11.5	185	1000	39	32
3x2.5	0.7	0.3	1.8	12.0	220	1000	34	30
4x2.5	0.7	0.3	1.8	13.0	260	1000	34	30
5x2.5	0.7	0.3	1.8	14.0	300	1000	31	28
6x2.5	0.7	0.3	1.8	15.0	340	1000	29	26
7x2.5	0.7	0.3	1.8	15.0	360	1000	27	25
10x2.5	0.7	0.3	1.8	17.5	475	1000	24	21
12x2.5	0.7	0.3	1.8	18.0	550	1000	22	20
14x2.5	0.7	0.3	1.8	19.0	625	1000	21	19
16x2.5	0.7	0.3	2.0	20.5	680	1000	20	18
19x2.5	0.7	0.3	2.0	21.5	770	1000	19	17
24x2.5	0.7	0.3	2.0	24.5	950	1000	17	16
27x2.5	0.7	0.3	2.0	25.5	1050	1000	16	16
30x2.5	0.7	0.3	2.0	26.0	1150	1000	16	14
37x2.5	0.7	0.3	2.0	28.0	1350	1000	15	13
44x2.5	0.7	0.4	2.2	32.0	1650	1000	14	12
52x2.5	0.7	0.4	2.2	33.5	1950	1000	13	12
61x2.5	0.7	0.4	2.2	35.0	2150	1000	12	11

Construction:

- 1. Solid/Stranded Annealed Copper Conductor & Tinned /Bare
- 2. Cross Linked polyethylene (XLPE) insulation
- 3. Cores laid up (filled if needed)
- 4. FRLS/General purpose PVC Inner sheath
- 5. FRIS/General purpose PVC outer sheath
- 'Dimensions specified are with stranded conductor.

LASER HT XLPE POWER CABLES

Laser Power & Infra produces HT Power Cable with XLPE Insulation of Voltage grade upto 33 kV(UE) conforming to Indian and various International Standards.

HT plant is equipped with heavy-duty machines for wire drawing, conductor manufacturing, laying up, armouring (Strip and Round wire), Sheathing and packaging. The manufacturing process starts with a compact circular conductor being fed to the extruder. The conductor passes through the extruder crosshead, which is covered with a semi conducting layer then the XLPE Insulation followed by a layer of a semi conductor layer as a core screen. The core is cured followed by the lapping of copper tape. A core is tested for partial discharge. The cores are laid up with fillers, provided with an Inner sheath, armoured and finally outer sheathed. The outer sheath can be PVC, FRLS or ZHFR.

Laser manufacturing process ensures quality cables for all Industry Verticals. All the latest techniques and new-generation compounds are used to ensure fast curing, superior electrical & mechanical properties, dimensional controls and higher productivity.

The extrusion process is carried out in a contamination free atmosphere to ensure that the insulation is free from any micro-voids and has negligible moisture content.

The manufacturing process is controlled by sophisticated instruments to ensure top quality.

Cables are produced strictly as per the quality plan and tested in a fully equipped Test lab to ensure the best quality products are produced as per the design and specifications.

Applicable standard:

IS7098/Part 2/1985

CONDUCTOR DATA

Conductor Technical data for single-core and multi-core cables conforming to IS 8130/1984 (Stranded Class -2) Aluminium Conductors and Annealed Copper Conductors, compacted circular or shaped.

Nominal size	Minimum r	no. of wires	Max. D.C. Resi	stance at 20°C	A.C. Resista	nce at 90°C
of Conductor Sq. Mm	Copper Nos.	Aluminium Nos.	Plain copper Ohms/Km	Aluminium Ohms/Km	Plain copper Ohms/Km	Aluminium Ohms/Km
25	6	6	0.727	1.20	0.930	1.54
35	6	6	0.524	0.868	0.671	1.11
50	6	6	0.387	0.641	0.495	0.82
70	12	12	0.268	0.443	0.343	0.567
95	15	15	0.193	0.320	0.247	0.410
120	18	15	0.153	0.253	0.196	0.324
150	18	15	0.124	0.206	0.159	0.264
185	30	30	0.0991	0.164	0.127	0.210
240	34	30	0.0754	0.125	0.0965	0.160
300	34	30	0.0601	0.100	0.0769	0.130
400	53	53	0.0470	0.0778	0.0602	0.10
500	53	53	0.0366	0.0605	0.0468	0.0774
630	53	53	0.0283	0.0469	0.0362	0.060
800	53	53	0.0221	0.0367	0.0283	0.0470
1000	53	53	0.0176	0.0291	0.0225	0.0372

 \sim 66 \sim

SHORT CIRCUIT CURRENT RATINGS FOR XLPE CABLES

Short Circuit Rating for 1 second duration for Copper and Aluminium XLPE Cables (Isc Current in KAmps)

N ' 1 C'	VIDEI	
Nominal Size	XLPE In	sulated
Sq.mm	Copper	Aluminium
25	3.6	2.4
35	5.0	3.3
50	7.1	4.7
70	10.0	6.6
95	13.6	9.0
120	17.1	11.3
150	21.4	14.2
185	26.4	17.5
240	34.3	22.6
300	42.9	28.3
400	57.1	37.7
500	71.4	47.2
630	90.0	59.4
800	114.3	75.5
1000	142.9	94.3

Rating for any other duration:

1) Max. Intial Conductor Temperature during operation : 90°C

2) Max. Final Conductor Temperature during short circuit: 250°C

Formula relating short Circuit Rating with t second duration $\label{eq:total_total} It = \underline{Isc}$

νt

Where It = Short Circuit Rating for t second

t = duration in seconds

Isc = Short Circuit rating for 1 second

Emergency overload: Cable may operate under overload conditions. Under such condition temperature not to exceed 130°C for maximum 100 hours per year and not more than 500 hours during lifetime of cable. This is approximately 20% higher than specified rating current duration the emergency period.

CAPACITANCE

Approximate Capacitance for Single core & Multi core cable in Microfarad per Km at 50 C/s

SQ MM		.3KV(E) or 3.3KV(UE)	3.8/6.6KV(E)	6.35/11 KV(E) or 6.6/6.6KV(UE)	11/11KV(UE)	12.7/22KV(E)	19/33KKV(E)
	UNARMOURED	ARMOURED					
25	0.230	0.210	0.220	0.180	0.140	-	-
35	0.270	0.240	0.250	0.210	0.150	0.140	-
50	0.300	0.270	0.270	0.220	0.160	0.160	0.120
70	0.340	0.310	0.310	0.250	0.190	0.170	0.140
95	0.390	0.350	0.350	0.290	0.210	0.190	0.150
120	0.430	0.390	0.380	0.310	0.220	0.210	0.160
150	0.490	0.420	0.430	0.340	0.240	0.230	0.180
185	0.520	0.460	0.450	0.360	0.260	0.240	0.180
240	0.590	0.510	0.510	0.410	0.290	0.270	0.200
300	0.670	0.570	0.540	0.460	0.320	0.300	0.230
400	0.760	0.630	0.570	0.520	0.360	0.340	0.250
500	0.770	0.680	0.570	0.560	0.390	0.360	0.270
630	0.810	0.680	0.640	0.630	0.430	0.400	0.290
800	0.860	0.740	0.730	0.710	0.490	0.450	0.330
1000	0.880	0.740	0.800	0.780	0.530	0.490	0.360

REACTANCE

Approximate Reactance for Multi core table in Ohms per Km at 50 C/s

19/33KV(E)	ı	ı	0.1340	0.1260	0.1210	0.1170	0.1120	0.1100	0.1060	0.1000	0.0971	
12.7/22KV(E)	1	0.1270	0.1200	0.1140	0.1090	0.1050	0.1000	0.0990	0.0952	0.0915	0.0883	
11/11KV(UE)	0.1300	0.1240	0.1170	0.1110	0.1070	0.1030	0.0987	0.0968	0.0932	0.0897	0.0866	
6.35/11KV(E) OR 6.6/6.6KV(UE)	0.1160	0.1110	0.1050	0.1000	0.0959	0.0925	0.0894	0.0879	0.0850	0.0823	0.0799	
3.8/6.6KV(E)	0.1090	0.1050	0.0989	0.0945	0.0909	0.0878	0.0851	0.0838	0.0812	0.0798	0.0788	
1.9/3.3KV(E)OR 3.3/3.3KV(UE)	0.0981	0.0940	0.0878	0.0842	0.0813	0.0785	0.0769	0.0755	0.0737	0.0725	0.0712	
SQ MM	25	35	50	70	92	120	150	185	240	300	400	

Applox	וווומות כם	מכונפוו	Apploxillate capacitalice for Sillyte core & Mutti core cabte ili Microlatau per Nill at 50 G/5	כסוע	אמנון כס	וברמחני		an bei vi	III dt 30 C/S			
			UNARMOURED	ED					ARMOURED			
Sq. MM	1.9/3.3 KV(E) or 3.3/3.3KV (UE)	3.8/6.6 KV(E)	6.35/11KV(E) or 6.6/6.6KV(UE)	11/11 KV(UE)	12.7/22 KV(E)	19/33 KV(E)	1.9/3.3KV(E) or 3.3/3.3KV(UE)	3.8/6.6 KV(E)	6.35/11KV(E) or 6.6/6.6KV(UE)	11/11 KV(UE)	12.7/22 KV(E)	19/33 KV(E)
25	0.1170	0.1230	0.1280	0.1390	ı	ı	0.1300	0.1330	0.1370	0.1470	ı	ı
35	0.1110	0.1170	0.1220	0.1330	0.1350	I	0.1230	0.1270	0.1310	0.1400	0.1420	1
20	0.1040	0.1110	0.1160	0.1260	0.1300	0.1400	0.1170	0.1200	0.1240	0.1340	0.1360	0.1470
70	0.0988	0.1050	0.1100	0.1190	0.1290	0.1330	0.1120	0.1140	0.1180	0.1270	0.1290	0.1400
95	0.0957	0.1010	0.1050	0.1150	0.1170	0.1270	0.1060	0.1080	0.1120	0.1210	0.1240	0.1340
120	0.0920	0.1020	0.1010	0.1100	0.1120	0.1220	0.1020	0.1040	0.1090	0.1180	0.1190	0.1290
150	0.0887	0.0936	0.0973	0.1060	0.1080	0.1170	0.0979	0.1010	0.1050	0.1130	0.1150	0.1240
185	0.0871	0.0919	0.0963	0.1040	0.1060	0.1160	0.0959	0.0993	0.1040	0.1110	0.1120	0.1210
240	0.0840	0.0894	0.0926	0.1000	0.1010	0.1110	0.0929	6960'0	0.0997	0.1070	0.1080	0.1170
300	0.0815	0.0869	9680.0	0.0961	0.0977	0.1060	0.0900	0.0936	0.0936	0.1020	0.1040	0.1130
400	0.0797	0.0850	0.0860	0.0925	0.0939	0.1030	0.0880	0.0917	0.0926	0.0984	0.0997	0.1180
200	0.0788	0.0838	0.0845	0.0905	0.0918	0.0994	0.0865	0.0900	0.0884	0.0959	0.0989	0.1060
089	0.0744	0.0819	0.0826	0.0875	0.0893	0960'0	0.0851	0.0876	0.0879	0.0941	0.0953	0.1020
800	0.0762	0.0778	0.0798	0.0855	9980.0	0.0925	0.0831	0.0858	0.0844	0.0912	0.0922	0.0976

RECOMMENDATIONS FOR CURRENT RATINGS

The current rating of the power cable is defined by the maximum intensity of current (amperes) which can flow continuously through the cable under permanent loading conditions. Without any risk of damaging the cable or deterioration of its electrical properties. The value given in the tables are valid for one circuit in a three phase system under the conditions specified. For grouping cables, rating factors must be used.

The current carrying capacities mentioned in LASER technical data are intended as a guide, to assist operating engineers in selecting cables for safety and reliability.

Basic assumptions and conditions of installation:

Max. conductor temperature : 90°C
 Ambient ground temperature : 30°C
 Ambient Air temperature : 40°C

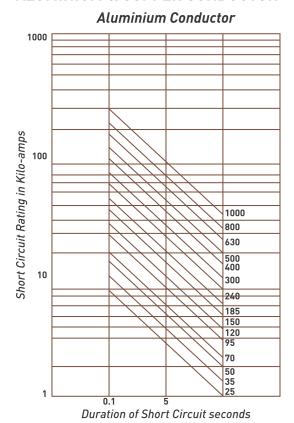
Thermal resistively of soil : 150°C Cm/W

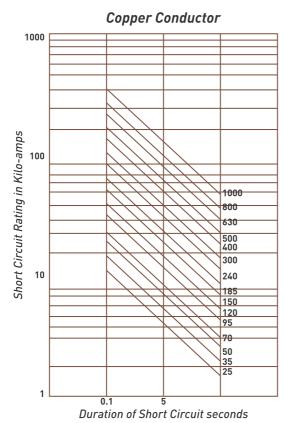
 Depth of laying (to the highest point of the cables laid direct in the ground)

3.3, 6.6 & 11 KV cables : 90 cm
Max. conductor temperature for short circuit : 250°C

To obtain the maximum current carrying capacity of a cable operating at different conditions from the standard, various rating factors are to be multiplied as follows:

 $la = K \times Is$


Where:


la : Current rating at actual operating conditions (amperes)

Is: Current rating at standard operating conditions (amperes)

K : Rating factor as applicable

GRAPHICAL REPRESENTATION OF SHORT CIRCUIT CURRENT RATINGS OF XLPE INSULATED ALUMINIUM & COPPER CONDUCTOR

LASER CABLES PRIVATE LIMITED RATING FACTORS

For Air and Ground Temperature:

a) Rating Factors for variation in Ambient Air Temperature

Air temperature deg. C Rating factor (maximum conductor temperature 90°C)

25	30	35	40	45	50	55	60
1.16	1.11	1.06	1	0.94	0.88	0.81	0.74

b) Rating Factors for variation in ground Temperature for cables laid direct in the Ground

15	20	25	30	35	40	45	50
1.12	1.08	1.04	1	0.96	0.91	0.87	0.82

Ground temperature deg. C Rating factor (maximum conductor temperature 90°C)

2. Rating Factors for variation in ground temperature for cables in ducts.

15	20	25	30	35	40	45	50
1.12	1.08	1.04	1	0.96	0.91	0.87	0.82

Ground temperature deg. C Rating factor (maximum conductor temperature 90°C)

3) Rating Factors for depth of laying for cables laid direct in the Ground

Depth of laying (mm)	3.3, 6.6 & 11KV cables	22& 33Kv Cables	
900	1	-	
1050	0.99	1	
1200	0.97	0.99	
1500	0.95	0.97	
1800	0.94	0.95	
2000	0.93	0.94	
2500	0.91	0.92	
3000 or more	0.9	0.91	

GROUP RATING FACTORS

For Single Core Cables

A) Group rating factors for three core cables. In Horizontal Formation Laid Direct in the ground

Number of	Spacing between trefoil group centres					
cables in group	Touching	200	400	600	800	
2	0.79	0.86	0.9	0.92	0.94	
3	0.67	0.77	0.82	0.86	0.89	
4	0.61	0.72	0.79	0.83	0.87	
5	0.56	0.68	0.76	0.81	0.85	
6	0.53	0.65	0.74	0.8	0.84	
7	0.5	0.63	0.72	0.78	0.83	
8	0.48	0.61	0.71	0.78	-	
9	0.46	0.6	0.7	0.77	_	
10	0.44	0.59	0.69	-	-	
11	0.43	0.58	0.69	-	_	
12	0.42	0.57	0.68	-	-	

B) Cables laid on Racks /Trays in covered trench with removable covers where air circulation is restricted, Trefoils are separated by two cable diameter horizontally and trays are in tiers having 300 mm distance.

No. Racks /Trays in Tiers	No. of Trefo	ils in Horizonta	l Formation
	1	2	3
1	0.95	0.90	0.88
2	0.90	0.85	0.83
3	0.88	0.83	0.81
6	0.86	0.81	0.79

C) As above B, but cables laid in open air:

1	1	0.98	0.96
2	1	0.95	0.93
3	1	0.94	0.92
6	1	0.93	0.90

FOR MULTI CORE CABLES

A) Cables laid inside concrete trench with removable covers, on cable trays where air circulation is restricted. The cables spaced by one cable diameter and trays are in tiers spaced by 300 mm. The clearance between the wall and the cable is 25 mm:

No. of cables trays in tier		Dista	nce between Tr	efoils	
	1	2	3	6	9
1	0.95	0.90	0.88	0.85	0.84
2	0.90	0.85	0.83	0.81	0.80
3	0.88	0.83	0.81	0.79	0.78
6	0.86	0.81	0.79	0.77	0.76

B) Cables laid on cable trays exposed to air, the cables spaced by one cable diameter and trays are in tiers spaced by 300 mm. The clearance of the cable from the wall is 25 mm.

No. of cables trays in tier		No	of cables per t	ray	
	1	2	3	6	9
1	1	0.98	0.96	0.93	0.92
2	1	0.95	0.93	0.90	0.89
3	1	0.94	0.92	0.89	0.88
6	1	0.93	0.90	0.87	0.86

C) Cables laid on cable trays exposed to air, the cables touching and trays are in tiers spaced by 300 mm. The clearance between the wall and the cable is 25 mm.

No. of cables trays in tier			No of cables		
	1	2	3	6	9
1	1	0.84	0.80	0.75	0.73
2	1	0.80	0.76	0.71	0.69
3	1	0.78	0.74	0.70	0.68
6	1	0.76	0.72	0.68	0.66

D) Cables laid direct In ground in horizontal formation: -

No. of cables trays in tier		Distance of ca	bles	
	Touchir	ng 15 cm	30 cm	45 cm
2	0.79	0.82	0.87	0.90
3	0.69	0.75	0.79	0.83
4	0.62	0.69	0.74	0.79
5	0.58	0.65	0.72	0.76
6	0.54	0.61	0.69	0.75

oltage Grade : 1.9/3.3 kV (Unscreened) (E) 3.3 /3.3 kV (Unscreened IS 7098 PART-2/2011 WEIGHT & DIMENSIONS

			٩				•		.,	.,								_	
	per	le-way :ts	Rat Touching Ducts	A	115	140	165	200	235	265	300	335	385	430	780	530	290	930	099
	Copper	In Single-way Ducts	Trefoil Touching Ducts	A	115	135	155	190	230	255	285	325	370	415	465	520	570	620	099
		in the round	Rat Touching	A	130	155	185	225	265	300	335	380	435	490	550	610	089	740	780
KAIINGS		Burned in the Direct 3 round	Trefoil Touching	A	125	150	180	215	260	295	325	370	425	475	240	009	670	730	780
CURRENI RAIINGS		Vir.	Rat Touching	A	110	135	165	210	255	295	335	390	460	530	620	730	840	096	1070
		In Air	Trefoil Touching Ducts	A	110	135	160	200	250	285	325	375	445	510	610	710	820	950	1070
	inium	le-way :ts	Rat Touching Ducts	A	91	110	125	155	185	210	230	260	300	335	380	430	485	530	570
	Alluminium	In Single-way Ducts	Trefoil Touching Ducts	A	88	105	120	150	175	200	225	250	290	325	370	420	470	520	570
		Direct round	Flat Touching	A	100	120	140	175	205	235	260	295	340	385	440	495	260	620	670
		Burned Direct in the round	Trefoil Touching	A	98	115	140	170	200	230	255	285	330	375	425	485	540	610	099
	Cu.	weight of cable		Kg/km	490	595	740	975	1240	1500	1750	2115	2685	3265	4140	5180	6600	8315	10525
	Al.	Approx weight of	cable	Kg/km	340	390	460	575	089	795	880	1025	1255	1470	1845	2240	2790	3430	4405
ed Caple	Approx,	overall	of cable	mm	17.5	18.5	20.0	22.0	23.5	26.0	26.5	28.5	31.5	33.5	37.5	40.5	45.5	50.5	57.5
Armounred Caple	Max	Thickness of PVC	outer	mm	1.24	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.56	1.56	1.56	1.72	1.72	1.88	2.04
	Nom.	dimension of Al. wire		mm	1.4	1.4	1.6	1.6	1.6	1.6	1.6	1.6	1.6	2.0	2.0	2.0	2.0	2.0	2.5
	Nom.	Thickness of XLPE	insulation	mm	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.6	2.8	3.0	3.3	3.5
	Ö.	Approx Weight	of cable	Kg/km	385	485	909	802	1075	1320	1565	1910	2440	2990	3785	4790	6115	7825	9765
inte	AI.	Approx Weight	of cable	Kg/km	235	275	325	405	515	615	695	825	1010	1195	1495	1850	2305	2940	3645
Unarmoured Cable	Арргох	Overall Diameter	of cable	mm	15.0	16.0	17.0	18.5	20.5	23.0	23.5	25.5	28.0	30.0	33.5	37.0	41.0	48.0	52.5
Ona	Nom.	Thickness of	PVC Outer Sheath	mm	1.8	1.8	1.8	1.8	2.0	2.0	2.0	2.0	2.0	2.0	2.2	2.2	2.2	2.4	2.6
	Nom.	Thickness of XLPE	insulation PVC Outer	шш	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.4	2.6	2.8	3.0
Nom.	stranded	class 2	as per IS 8130/ 1984	Sq.mm	25	35	20	70	95	120	150	185	240	300	400	200	930	800	1000
						ш													

SINGLE CORE ALUMINIUM & COPPER CONDUCTOR, XLPE INSULATED, UNARMOURED

& ARMOURED CABLE CONFORMING TO IS 7098 PART -2/2011

Voltage Grade: 3.3 /6.6KV [E]
WEIGHT & DIMENSIONS

			Flat Touching	4	155	185	220	275	340	390	077	510	009	089	790	910	1030	1140	1250
		In Air	Trefoil Touching To	A	20	180	215	270	330	380	430	495	580	9.029	780	006	1020	1150 1	1260 1
		ау	Rat To Touching Tou Ducts	A	115 1	140	160 2	195 2	235 3	265	295 4	330 4	380	425 6	480 7	530 9	580 1	630 1	670 1
	Copper	In Single-way Ducts	Trefoil F Fouching Tou Ducts Du	A	110 1	135 1	155 1	190 1	225 2	255 2	285 2	320 3	370 3	415 4	465 4	520 5	580 5	9 089	9 029
						155 13													
		Burned in the Direct 3 round	oil Rat ing Touching	A	5 130	`	0 185	5 225	0 265	200	5 335	0 380	5 435	5 490	0 550	0 610	089 0	0 740	0 790
		Ba -id	Trefoil ng Touching	A	125	150	180	5 215) 260	5 295	325	370	425	475) 540	009 (5 670	730	0 790
RATINGS		In Air	. Rat 9 Touching	A	120	145	177	215	260	302	345	395	470	540	630	730	715	096	1070
CURRENT RATINGS			Trefoil 1 Touching Ducts	4	115	140	174	210	255	295	335	385	455	520	610	720	770	950	1070
	Alluminium	In Single-way Ducts	Rat Touching Ducts	4	90	105	117	155	180	205	230	260	300	335	380	430	367	530	580
	Allur	In Sin D	Trefoil Touching Ducts	4	87	105	120	150	175	200	220	250	290	325	370	415	767	520	570
		Burned Direct in the round	Flat Touching	4	100	120	139	175	205	235	260	295	340	385	440	495	453	620	089
		Burned in the	Trefoil Touching	A	66	115	137	170	200	230	255	290	330	375	425	485	495	610	670
	Cu.	Approx weight of	cable	Kg/km	705	840	985	1215	1495	1775	2060	2445	3135	3755	4665	5774	7200	9120	11240
	Al.	Approx weight of	cable	Kg/km	260	635	705	815	935	1070	1190	1355	1700	1955	2370	2795	3390	4235	5120
Armounred Cable	Approx,	overall diameter	of cable	mm	22.00	23.50	24.50	26.00	28.00	30.00	31.00	33.00	36.50	39.00	43.00	47.00	50.50	26.50	62.50
Armon	Mn.	Thickness of PVC		mm	1.40	1.40	1.40	1.40	1.40	1.40	1.56	1.56	1.56	1.56	1.72	1.88	1.88	2.04	2.04
	Nom.	Thickness T of XLPE	insulation	mm	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	2.0	2.0	2.0	2.0	2.0	2.5	2.5
	Cu.	Approx T Weight of		Kg/km	485	645	780	1020	1285	1575	1855	2220	2815	3450	4375	5430	6785	8505	10430
	Al. Approx	Weight of /cable W		Kg/km	340	440	200	615	725	870	985	1135	1380	1655	2080	2490	2975	3620	4310
Unarmoured Cable	Approx Al	Overall W Diameter	of cable	mm	18.00	20.00	21.00	23.50	25.00	27.50	28.50	30.50	33.50	36.50	41.00	44.24	48.00	53.50	57.50
Unarmo	Nom.	Thickness of PVC Outer D		mm	1.8	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.2	2.2	2.2	2.4	2.4	2.6	2.6
	Nom.	Thickness T	insulation	mm	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	3.0	3.3	3.5	3.5	3.5	3.6
Nom. size of	stranded class	2 conductor as 7 per IS 8130/		Sq.mm	25	35	50	70	95	120	150	185	240	300	400	200	930	800	1000

SINGLE CORE ALUMINIUM & COPPER CONDUCTOR, XLPE INSULATED, UNARMOURED

& ARMOURED CABLE CONFORMING TO IS 7098 PART -2/2011

Voltage Grade: 6.35/11KV (E), 6.6/6.6KV(UE) WEIGHT & DIMENSIONS

		In Air	Rat Touching	4	185	220	275	340	390	440	510	600	089	790	910	1030	1140	1250
			Trefoil Touching Ducts	4	180	215	270	330	380	430	495	580	670	780	900	1020	1150	1260
	Copper	In Single-way Ducts	Rat Touching	4	140	160	195	235	265	295	330	380	425	480	530	580	930	929
	Cop	In Sing Du	Trefoil Touching Ducts	∢	135	155	190	225	255	285	320	370	415	465	520	580	930	929
		Burned in the Direct 3 round	Rat Touching	4	155	185	225	265	300	335	380	435	490	550	610	089	740	790
		Burne Direct	Trefoil Touching	V	150	180	215	260	295	325	370	425	475	240	009	929	730	790
TINGS		In Air	Rat Touching	4	145	170	215	260	302	345	395	470	540	930	730	840	096	1070
CURRENT RATINGS			Trefoil Touching Ducts	4	140	170	210	255	295	335	385	455	520	610	720	830	950	1070
ಶ	Alluminium	In Single-way Ducts	Rat Touching	V	105	125	155	180	205	230	260	300	335	380	430	480	530	280
	Allum	In Sing Du	Trefoil Touching Ducts	¥	105	120	150	175	200	220	250	290	325	370	415	470	520	570
		Burned Direct in the round	Flat Touching	V	120	140	175	205	235	260	295	340	385	077	495	260	620	089
		Burned Direc in the round	Trefoil Touching	A	115	140	170	200	230	255	290	330	375	425	485	550	610	670
	Cu.	Approx weight of	cable	Kg/km	915	1060	1295	1580	1895	2155	2645	3240	3840	4710	5810	7215	9135	11240
l Cable	Al.	Approx weight of	cable	Kg/km	710	780	890	1020	1190	1285	1560	1805	2040	2420	2870	3405	4250	5120
ire Armounred Cable	Approx,	overall diameter	of cable	mm	25.00	26.00	27.50	29.50	32.00	32.50	35.50	38.00	40.00	43.50	47.00	51.00	56.50	62.50
Round Wire	Mn.	Thickness of PVC outer	sheath	mm	1.40	1.40	1.40	1.40	1.56	1.56	1.56	1.56	1.56	1.72	1.88	1.88	2.04	2.04
	Nom. of AL	Round		mm	1.6	1.6	1.6	1.6	1.6	1.6	2.0	2.0	2.0	2.0	2.0	2.0	2.5	2.5
	Cu.	Approx Weight of	cable	Kg/km	099	790	1010	1275	1535	1785	2175	2730	3300	4090	5135	6465	8195	10135
le	Al. Approx	Weight of cable		Kg/km	455	515	909	715	830	915	1090	1300	1500	1795	2195	2655	3315	4015
Unarmoured Cable	Approx	Overall Diameter	of cable	mm	21.00	22.00	23.50	25.00	27.50	28.00	30.50	33.00	35.00	38.00	41.50	45.00	51.00	55.50
Unar	Nom.	Thickness of PVC Outer	Sheath	mm	2.0	2.0	2.0	2.0	2.0	2.0	2.2	2.2	2.2	2.2	2.4	2.4	2.6	2.6
	Nom.	Thickness of XLPE	insulation	mm	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6
Nom. size of	dass2 as per IS	8130/84		Sq.mm	35	50	70	95	120	150	185	240	300	400	200	630	800	1000

SINGLE CORE ALUMINIUM & COPPER CONDUCTOR, XLPE INSULATED, UNARMOURED

76

& ARMOURED CABLE CONFORMING TO IS 7098 PART -2/2011

Voltage Grade : 11/11KV (UE)
WEIGHT & DIMENSIONS

Nom. size of		Unar	Unarmoured Cable	ole			Round Win	Round Wire Armounred Cable	d Cable					UD.	CURRENT RATINGS	NGS						
	Nom.	Nom.	Approx	Al. Approx	Cu.	Nom. of AL	Mn.	Approx,	Al.	Cu.			Alluminium	nium					Copper	ier		
	Thickness of XLPE	Thickness of PVC Outer	Overall Diameter	Weight of cable	Approx Weight of	Round	Thickness of PVC outer	overall diameter	Approx weight of	Approx weight of	Burned Direct in the round	Direct round	In Single-way Ducts	e-way ts	In Air		Burned in the Direct 3 round	n the ound	In Single-way Ducts	e-way ts	In Air	
	insulation	Sheath	of cable		cable		sheath	of cable	cable	cable	Trefoil Touching	Flat Touching	Trefoil Touching Ducts	Rat Touching Ducts	Trefoil Touching ' Ducts	Rat Touching T	Trefoil Touching T	Rat Fouching	Trefoil Touching Ducts	Rat Touching Ducts	Trefoil Touching	Flat Touching
	mm	mm	mm	Kg/km	Kg/km	mm	mm	mm	Kg/km	Kg/km	A	A	A	A	A	A	A	4	A	A	A	A
	5.5	2.0	24.50	909	810	1.6	1.40	29.00	006	1105	115	120	105	105	140	145	150	155	135	140	180	185
	5.5	2.0	25.50	999	945	1.6	1.56	30.50	1005	1285	140	140	120	125	170	170	180	185	155	160	215	220
	5.5	2.0	27.50	770	1170	1.6	1.56	32.00	1130	1530	170	175	150	155	210	215	215	225	190	195	270	275
	5.5	2.2	29.00	890	1445	2.0	1.56	33.50	1270	1825	200	205	175	180	255	260	260	265	225	235	330	340
	5.5	2.2	31.50	1045	1750	2.0	1.56	37.00	1535	2240	230	235	200	205	295	305	295	300	255	265	380	390
	5.5	2.2	32.50	1135	2010	2.0	1.56	37.50	1640	2510	255	260	220	230	335	345	325	335	285	295	430	440
	5.5	2.2	34.00	1290	2380	2.0	1.56	39.50	1820	2910	290	295	250	260	385	395	370	380	320	330	495	510
	5.5	2.2	36.50	1515	2945	2.0	1.72	42.50	2115	3545	330	340	290	300	455	470	425	435	370	380	580	900
	5.5	2.2	38.50	1730	3525	2.0	1.72	44.50	2360	4160	375	385	325	335	520	540	475	490	415	425	929	680
	5.5	2.4	42.00	2080	4375	2.0	1.88	48.00	2785	5080	425	440	370	380	610	930	540	550	465	480	780	790
	5.5	2.6	45.00	2460	2400	2.5	2.04	51.00	3210	6150	485	495	415	430	720	730	009	610	520	530	006	910
	5.5	2.6	49.00	2990	0089	2.5	2.04	56.00	3955	7760	550	260	470	480	830	840	670	089	580	280	1020	1030
	5.5	2.8	55.50	3690	8570	2.5	2.20	61.00	4725	9610	610	620	520	530	950	096	730	740	930	930	1150	1140
1000	5.5	2.8	29.00	43.60	10480	2.5	2.20	90.99	5535	11655	670	089	570	580	1070	1070	790	790	670	670	1260	1250

SINGLE CORE ALUMINIUM & COPPER CONDUCTOR, XLPE INSULATED, UNARMOURED

& ARMOURED CABLE CONFORMING TO IS 7098 PART -2/2011

Voltage Grade: 12.7/22KV (E)
WEIGHT & DIMENSIONS

Nom. size of		Unar	Unarmoured Cable	le			Round Wil	Round Wire Armounred Cable	d Cable					EU.	CURRENT RATINGS	NGS						
conductor	Nom.	Nom.	Approx	Al. Approx	Cu.	Nom. of AL	Mn.	Approx,	Al.	Cu.			Alluminium	ium					Copper			
	Thickness of XLPE	Thickness of PVC Outer	Overall Diameter	Weight of cable	Approx Weight of	Round wire	Thickness of PVC outer	overall	Approx weight of	Approx weight of	Burned Direct in the round	Direct round	In Single-way Ducts	-way	In Air		Burned in the Direct 3 round	n the ound	In Single-way Ducts	-way	In Air	_
	insulation	Sheath	of cable		cable		sheath	of cable	cable	cable	Trefoil Touching	Flat	Trefoil Touching 7 Ducts	Rat Touching	Trefoil Touching Ducts	Rat Touching 7	Trefoil Touching 1	Rat Touching To	Trefoil Fouching T Ducts	Rat Touching T	Trefoil Touching Ducts	Rat Touching
Sq.mm	mm	mm	mm	Kg/km	Kg/km	mm	mm	mm	Kg/km	Kg/km	A	4	4	4	A	A	A	A	4	4	4	4
35	9	2.0	26.00	099	870	1.60	1.56	30.00	980	1185	115	120	100	105	145	145	150	155	130	135	185	190
20	9	2.0	27.00	730	1010	1.60	1.56	31.50	1085	1360	135	140	120	125	175	175	175	180	155	160	225	230
70	9	2.0	28.50	835	1235	1.60	1.56	33.50	1210	1610	165	170	145	150	215	220	215	220	185	195	275	285
95	9	2.2	31.00	985	1545	2.00	1.56	36.00	1465	2025	200	205	170	180	260	270	255	265	220	230	340	345
120	9	2.2	33.00	1120	1825	2.00	1.56	38.50	1630	2335	225	230	195	200	300	310	290	300	250	260	390	400
150	9	2.2	33.50	1215	2085	2.00	1.56	39.00	1735	2605	250	260	220	225	340	350	325	330	280	290	077	450
185	9	2.2	35.50	1370	2460	2.00	1.72	41.00	1920	3010	285	290	245	255	390	400	365	375	315	325	500	510
240	9	2.2	38.00	1600	3030	2.00	1.72	44.00	2220	3650	330	335	285	290	7460	470	420	430	360	370	290	900
300	9	2.4	40.00	1815	3615	2.00	1.72	46.00	2520	4315	370	380	320	325	530	540	470	480	405	415	089	069
400	9	2.4	43.50	2180	4475	2.00	1.88	49.50	2910	5200	420	430	360	370	620	930	530	540	455	465	780	790
200	9	2.6	47.00	2610	5555	2.50	2.04	54.00	3540	6480	475	485	410	420	720	730	290	009	510	520	900	910
930	9	2.6	50.50	3105	6915	2.50	2.04	57.50	4100	7905	540	550	7460	470	830	840	099	099	260	570	1020	1020
800	9	2.6	57.00	3815	8700	2.50	2.20	62.50	4870	9750	009	610	510	520	950	950	730	720	620	620	1150	1140
1000	9	2.8	61.00	4555	10675	2.50	2.20	98.00	5765	11885	099	099	260	260	1070	1060	780	160	099	099	1270	1240

78

& ARMOURED CABLE CONFORMING TO IS 7098 PART -2/2011

Voltage Grade: 19/33KV [E]
WEIGHT & DIMENSIONS

			at hing		30	285	345	0(0.5	0	0(00	790	0	1020	1140	1240
		In Air	l Flat ng Touching		230			400	450	510	9009	069		910			
			Trefoil Touching		225	275	340	390	440	500	590	989	780	900	1020	1150	1270
	Copper	In Single-way Ducts	Rat Touching Ducts		160	195	230	260	290	325	370	415	465	520	570	620	099
	Col	In Sing Du	Trefoil Touching Ducts		155	185	220	250	280	315	360	405	455	510	260	620	099
		Burned in the Direct 3 round	Rat Touching		180	220	265	300	330	375	430	480	240	009	099	720	160
		Burne Direct	Trefoil Touching		175	215	255	290	325	365	420	470	530	290	099	730	780
TINGS		Air.	Rat Touching		175	220	270	310	350	400	470	540	630	730	840	950	1060
CURRENT RATINGS		In Air	Trefoil Touching Ducts		175	215	260	300	340	390	460	530	620	720	830	950	1070
D)	inium	e-way	Rat Touching Ducts		125	150	180	200	225	255	290	325	370	420	470	520	260
	Alluminium	In Single-way Ducts	Trefoil Touching Ducts		120	145	170	195	220	245	285	320	360	410	460	510	260
		Direct round	Flat Touching		140	170	205	230	260	290	335	380	430	485	550	610	099
		Burned Direct in the round	Trefoil Touching		135	165	200	225	250	285	330	370	420	475	240	009	099
	Cu.	Approx weight of	cable	Kg/km	1865	2130	2495	2830	3105	3570	4230	5065	2962	7170	8635	10505	12970
able	Al.	Approx weight of	cable	Kg/km	1590	1730	1935	2125	2235	2480	2800	3270	3670	4230	4825	5625	9820
Round Wire Armounred Cable	Approx,				39.00	40.50	43.00	45.00	45.50	48.00	50.50	54.00	57.00	90.50	94.00	00.69	76.00
and Wire A		iss		mm	1.56 3	1.56	1.72	1.72	1.72	1.88	1.88	2.04					
Rou	M		sheath		1.	1.5	1	1.5		1.8	1.8	2.0	2.04	2.20	2.36	2.36	2.52
	Nom. of AL	Round wire			2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.50	2.50	2.50	2.50	2.50	3.15
	Cu.	Approx Weight of	cable	Kg/km	1345	1590	1885	2185	2450	2885	3485	4135	4985	6100	7495	9350	11375
d).	Al. Approx	Weight of cable		Kg/km	1065	1185	1325	1480	1580	1800	2050	2340	2690	3155	3690	4465	5255
Unarmoured Cable	Approx /		of cable	mm	34.00	35.50	37.00	39.00	40.00	42.00	44.50	47.00	50.00	53.50	57.00	63.50	67.50
Unarm	Nom.	Thickness of PVC Outer	Sheath		2.2	2.2	2.2	2.2	2.4	2.4	2.4	2.6	2.6	2.8	3.0	3.0	3.2
	Nom.	Thickness of XLPE	insulation		8.8	8.8	8.8	8.8	8.8	8.8	8.8	8.8	8.8	8.8	8.8	8.8	8.8
Nom, size of				Sq.mm	20	70	95	120	150	185	240	300	400	200	930	800	1000

THREE CORE COMPACTED ALUMINIUM & COPPER CONDUCTOR, XLPE INSULATED,

ARMOURED CABLE CONFORMING TO IS 7098 PART -2/2011

Voltage Grade: 1.9/3.3KV (UNSCREENED)(E)
WEIGHT & DIMENSIONS

3.3 & 3.3 KV (UNSCREENED) (UE)

		In Air	4	125	155	190	235	290	330	375	435	510	290	670
	Copper	Buried in Duct	4	100	120	145	175	210	240	270	300	350	390	440
CURRENT RATINGS		Burned Direct in Ground	4	120	145	170	210	250	285	315	355	410	460	520
CURRENT		In Air	4	66	120	145	185	225	255	295	340	400	460	535
	Aluminium	Buried in Duct	V	80	76	110	140	165	185	210	235	270	302	350
		Burned Direct in Ground	A	94	115	135	165	195	220	245	280	320	360	410
	Cu.	Approx Weight of cable	kg/km	1775	2080	2795	3455	4340	5165	6510	7710	9470	11530	14810
ed Cable	Al.	Approx Weight of cable	kg/km	1330	1460	1960	2245	2660	3040	3885	4435	5160	6115	7900
Round Wire Armoured Cable	Approx	Overall diameter of cable	mm	30.00	31.50	35.50	37.50	40.50	43.50	47.50	50.50	53.50	59.50	92.00
Round	Min.	Thickness of PVC outer sheath	шш	1.56	1.56	1.56	1.56	1.72	1.88	2.04	2.04	2.20	2.36	2.68
	Nom.	Dimension of GI. round wire	mm	1.60	1.60	2.00	2.00	2.00	2.00	2.50	2.50	2.50	2.50	3.15
	Cu.	Approx Weight of cable	kg/km	1455	1775	2200	2835	3645	4415	5295	6450	8105	9955	12445
Cable	Al.	Approx Weight of cable	kg/km	1010	1155	1360	1625	1965	2295	2670	3170	3790	4540	5530
Strip Armoured Cable	Approx	Overall Diameter of cable	mm	28.00	30.00	33.00	35.00	38.50	50.00	43.50	47.00	50.00	26.00	60.50
Str	Min.	Thickness of PVC outer sheath	mm	1.4	1.56	1.56	1.56	1.72	1.72	1.88	2.04	2.20	2.20	2.52
	Nom.	Dimension of GI flat strip	mm	4X08										
Min.	Thickness	of PVC Inner Sheath	mm	0.3	0.3	0.4	0.4	0.4	0.5	0.5	0.5	9.0	9.0	0.7
From of Nom. Thick-	ness of XLPE	insulation mm		2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
From of	conductor	stranded		Shaped										
Nom. Size of	conductor as	per IS 8130/84 (class 2)	Sq.mm	25	35	50	70	95	120	150	185	240	300	400

THREE CORE ALUMINIUM & COPPER CONDUCTOR, XLPE INSULATED, ARMOURED

CABLE CONFORMING TO IS 7098 PART-2/2011

Voltage Grade : 1.9/3.3 kV (Screened) [E) 3.3 & 3.3 kV (Screened) (UE) WEIGHT & DIMENSIONS

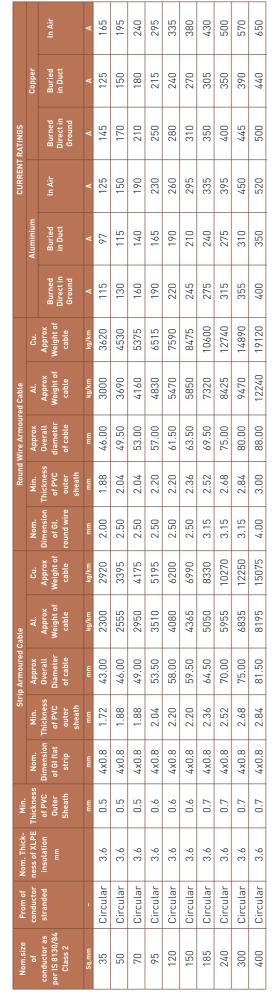
		In Air	A	125	155	190	235	290	330	375	435	510	290	670
	Copper	Buried in Duct	A	100	120	145	175	210	240	270	300	350	390	440
RATINGS		Burned Direct in Ground	A	120	145	170	210	250	285	315	355	410	460	520
CURRENT RATINGS		In Air	A	66	120	145	185	225	255	295	340	400	460	535
		Buried in Duct	A	80	94	110	140	165	185	210	235	270	305	350
		Burned Direct in Ground	A	94	115	135	165	195	220	245	280	320	360	410
	Ċ.	Approx Weight of cable	kg/km	2545	2955	3500	4355	5760	6820	1690	9085	11055	13940	16750
ed Cable	Al.	Approx Weight of cable	kg/km	2100	2330	2665	3140	4080	4700	5070	5810	6745	8525	9870
Round Wire Armoured Cable	Approx	Overall diameter of cable	mm	37.0	39.0	42.0	45.5	50.5	55.5	57.0	61.5	67.0	73.5	80.0
Round	Min.	Thickness of PVC outer sheath	mm	1.56	1.72	1.72	1.88	2.04	2.04	2.20	2.36	2.36	2.68	2.84
		Dimension of GI. round wire	mm	2.0	2.0	2.0	2.0	2.5	2.5	2.5	2.5	2.5	3.15	3.15
	Ċū.	Approx Weight of cable	kg/km	2020	2350	2880	3650	4590	5262	6375	7645	9510	11500	14105
Cable	Al.	Approx Weight of cable	kg/km	1570	1730	2040	2440	2905	3475	3750	4370	5195	9809	7225
Strip Armoured Cable	Approx	Overall Diameter of cable	ww	34.5	36.5	39.5	43.0	47.0	52.0	53.5	58.0	63.5	68.5	75.0
Str	Min.	Dimension Thickness of GI flat of PVC strip outer sheath	mm	1.56	1.56	1.72	1.72	1.88	2.04	2.04	2.20	2.36	2.52	2.68
	Nom	Dimension of GI flat strip	mm	4×0.8	4x0.8	4×0.8	4×0.8	4x0.8	4x0.8	4×0.8	4x0.8	4×0.8	4×0.8	4x0.8
Min.	E	of PVC Outer Sheath	mm	0.4	0.4	0.4	0.5	0.5	0.5	9.0	9.0	9.0	0.7	0.7
Nom. Thick-	ness of XLPE	insulation mm		2.2	2.2	22	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
From of		stranded	0	Circular										
Nom. size of	conductor as	per IS 8130/84 class 2	Sq.mm	25	35	20	70	95	120	150	185	240	300	400

THREE CORE ALUMINIUM & COPPER CONDUCTOR, XLPE INSULATED, ARMOURED

CABLE CONFORMING TO IS 7098 PART-2/2011

Voltage Grade: 3.8 / 6.6 kV [E] WEIGHT & DIMENSIONS

		In Air	4	135	165	195	240	295	335	380	430	200	570	650
	Copper	Buried in Duct	4	105	125	150	180	215	240	270	302	350	390	077
CURRENT RATINGS		Burned Direct in Ground	A	120	145	170	210	250	280	310	350	400	445	200
CURRENT		In Air	A	105	125	150	190	230	260	295	335	395	450	520
		Buried in Duct	A	82	67	115	140	165	190	210	240	275	310	350
		Burned Direct in Ground	V	92	115	130	160	190	220	245	275	315	355	400
	Cu.	Approx Weight of cable	kg/km	2835	3220	3815	4580	6015	7130	7965	9330	12250	14505	18770
ed Cable	Al.	Approx Weight of cable	kg/km	2390	2600	2980	3365	4330	5005	5340	9020	7935	0606	11890
Round Wire Armoured Cable	Approx	Overall diameter of cable		39.50	42.00	44.50	48.00	53.00	58.00	59.50	94.00	71.50	77.00	87.00
Round	Min.	Thickness of PVC outer sheath		1.72	1.72	1.88	1.88	2.04	2.20	2.20	2.36	2.52	2.68	3.00
	Nom.	Dimension of GI. round wire		2.00	2.00	2.00	2.00	2.50	2.50	2.50	2.50	3.15	3.15	4.00
	Cu.	Approx Weight of cable	kg/km	2230	2595	3115	3865	4780	5775	6620	7840	9885	11935	14790
Cable	Al.	Approx Weight of cable	kg/km	1785	1975	2280	2650	3095	3655	3995	4565	5570	6520	7910
Strip Armoured Cable	Approx	Overall Diameter of cable		37.00	39.50	42.00	46.00	49.50	54.50	56.50	60.50	66.50	72.00	80.00
Stri	Min.	Thickness of PVC outer sheath		1.56	1.72	1.72	1.88	1.88	2.04	2.20	2.20	2.36	2.52	2.84
	Nom.	Dimension of GI flat strip		4×0.8	4×0.8	4×0.8	4×0.8	4×0.8	4x0.8	4x0.8	4×0.8	4x0.8	4x0.8	4×0.8
Min.	Thickness	of PVC Outer Sheath		0.4	7.0	0.5	0.5	0.5	9.0	9.0	9.0	0.7	0.7	0.7
Nom. Thick-	ness of XLPE Thickness	insulation mm		2.8	2.8	28	2.8	2.8	2.8	2.8	2.8	2.8	3.0	3.3
From of		stranded		Circular										
Nom. size	Jo	conductor as per IS 8130/84 ciass2	Sq.mm	25	35	50	70	95	120	150	185	240	300	400



THREE CORE ALUMINIUM & COPPER CONDUCTOR, XLPE INSULATED, ARMOURED

CABLE CONFORMING TO IS 7098 PART-2/2011

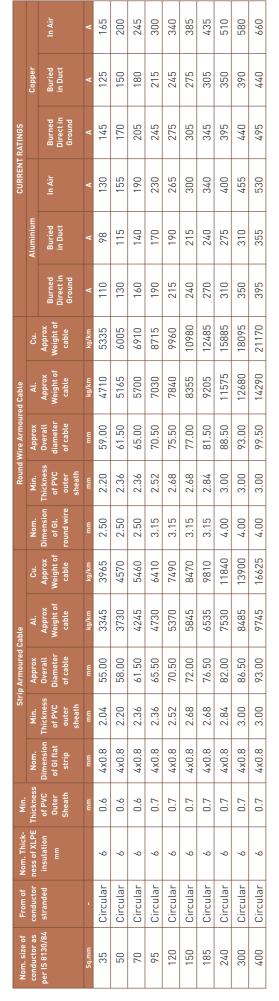
Voltage Grade: 6.35 / 11 kV (E)
WEIGHT & DIMENSIONS

THREE CORE ALUMINIUM & COPPER CONDUCTOR, XLPE INSULATED, ARMOURED

CABLE CONFORMING TO IS 7098 PART-2/2011

Voltage Grade: 11/11 KV (UE)
WEIGHT & DIMENSIONS

		In Air	A	165	195	240	295	335	380	430	200	570	920
	Copper	Buried in Duct	4	125	150	180	215	240	270	305	350	390	440
RATINGS		Burned Direct in Ground	۷	145	170	210	250	280	310	350	400	445	200
CURRENT RATINGS		In Air	A	125	150	190	230	260	295	335	395	450	520
		Buried in Duct	4	67	115	140	165	190	210	240	275	310	350
		Burned Direct in Ground	A	115	130	160	190	220	245	275	315	355	400
	Cu.	Approx Weight of cable	kg/km	5005	5555	7160	8330	9605	10495	12040	14255	17550	20765
ed Cable	AI.	Approx Weight of cable	kg/km	4385	4720	5950	9799	7480	7870	8760	0566	12135	13885
Round Wire Armoured Cable	Approx	Overall diameter of cable	mm	55.50	58.00	63.50	67.50	72.00	74.00	78.00	84.00	90.00	96.50
Round	Min.	Thickness of PVC outer sheath	mm	2.20	2.20	2.36	2.52	2.52	2.68	2.84	3.00	3.00	3.00
	Nom.	Dimension of Gl. round wire	mm	2.50	2.50	3.15	3.15	3.15	3.15	3.15	3.15	4.00	4.00
	Cu.	Approx Weight of cable	kg/km	3735	4240	5095	6155	7205	0908	9435	11450	13495	16335
Cable	AI.	Approx Weight of cable	kg/km	3115	3400	3885	4475	2082	5435	6160	7135	8080	9455
Strip Armoured Cable	Approx	Overall Diameter of cable	mm	52.00	55.00	58.00	62.50	67.00	00.69	73.00	79.00	83.50	90.00
Str	Min.	Dimension Thickness of GI flat of PVC strip outer sheath	mm	2.04	2.20	2.20	2.36	2.36	2.52	2.68	2.84	3.00	3.00
	Nom.	Dimension of GI flat strip	mm	4×0.8	4×0.8	4×0.8	4x0.8	4×0.8	4x0.8	4×0.8	4×0.8	4x0.8	4x0.8
Min.	Thickness	of PVC Outer Sheath	mm	0.5	9.0	9.0	9.0	0.7	0.7	0.7	0.7	0.7	0.7
From of Nom. Thick-	conductor ness of XLPE Thickness	insulation mm		5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5
From of	conductor	stranded	٠	Circular									
Nom.size	Jo	conductor as per IS 8130/54	Sq.mm	35	20	70	95	120	150	185	240	300	400



THREE CORE ALUMINIUM & COPPER CONDUCTOR, XLPE INSULATED, ARMOURED

84

CABLE CONFORMING TO IS 7098 PART-2/2011

Voltage Grade: 12.7 / 22 KV [E] WEIGHT & DIMENSIONS

THREE CORE ALUMINIUM & COPPER CONDUCTOR, XLPE INSULATED, ARMOURED

CABLE CONFORMING TO IS 7098 PART-2/2011

Voltage Grade: 19 / 33 KV (E)
WEIGHT & DIMENSIONS

		In Air	A	200	245	300	340	385	435	510	280	099
	Copper	Buried in Duct	4	150	180	215	245	275	305	350	390	440
RATINGS		Burned Direct in Ground	A	170	205	245	275	305	345	395	440	495
CURRENT RATINGS		In Air	A	155	190	230	265	300	340	400	455	530
		Buried in Duct	A	115	140	170	190	215	240	275	310	355
		Burned Direct in Ground	A	130	160	190	215	240	270	310	350	395
	Cu.	Approx Weight of cable	kg/km	8760	9865	11010	13540	14585	16220	18575	20865	23955
ed Cable	AI.	Approx Weight of cable	kg/km	7920	8655	9325	11415	11960	12945	14260	15450	17075
Round Wire Armoured Cable	Approx	Overall diameter of cable		77.00	81.00	85.00	91.00	92.50	96.50	102.00	106.50	113.00
Round	Min.	Thickness of PVC outer sheath		2.68	2.84	3.00	3.00	3.00	3.00	3.00	3.00	3.00
	Nom.	Dimension of GI. round wire		3.15	3.15	3.15	4.00	4.00	4.00	4.00	4.00	4.00
	Cu.	Approx Weight of cable	kg/km	6195	7195	8202	9355	10385	11815	13865	15975	18785
Cable	Al.	Approx Weight of cable	kg/km	5355	2980	6520	7230	7760	8540	9555	10555	11905
Strip Armoured Cable	Approx	Overall Diameter of cable		72.00	76.00	80.00	84.50	86.00	90.50	95.50	100.00	106.50
Str	Min.	Dimension Thickness of GI flat of PVC strip outer sheath		2.52	2.68	2.84	2.84	3.00	3.00	3.00	3.00	3.00
	Nom.			4×0.8	4×0.8	4×0.8	4×0.8	4×0.8	4×0.8	4×0.8	4×0.8	4×0.8
Min.	E Thickness	of PVC Outer Sheath		0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7
From of Nom. Thick-	conductor ness of XLPE Thickness	insulation mm		8.8	8.8	8.8	8.8	8.8	8.8	8.8	8.8	8.8
From of	conductor	stranded		Circular								
Nom.size	of	conductor as per 1S 8130/84	Sq.mm	20	70	95	120	150	185	240	300	400

PROPERTIES OF FIRE PERFORMANCE IN CABLES

					Ту	pes			
	oerties vered	FR Flame Retardant		Flame	RLS Retardant Smoke	Zero l	HLS Halogen Smoke		e Spread sistant
Properties	Ref. Standard	Applicable	Limit	Applicable	Limit	Applicable	Limit	Applicable	Limit
Oxygen Index	ASTMD- 2863	✓	29% (Min.)	✓	29% (Min.)	✓	30% (Min.)	✓	30% (Min.)
Temperature Index	ASTMD- 2863	✓	250°C (Min.)	✓	250°C (Min.)	✓	250°C (Min.)	✓	250°C (Min.)
Smoke Density Rating	ASTMD-2843 IEC:61034			✓	40% (Max.)	✓	20% (Max.)		
Halogen Acid Gas Generation	IEC:60754-1 EN-50267-2-1			✓	20% (Max.)	✓	0.5% (Max.)		
Toxicity Index	IEC-60754-2 EN-50267-2-2					✓	0.5% (Max.)		
Corrosive Gases	IEC:60754-2 EN-50267-2-2					✓	PH>4.3 Conductivity <100µs/cm		
Flame Test on Single Cable	IEC:60332-1 EN-50265	✓	As Per Specification	✓	As Per Specification	✓	As Per Specification	✓	As Per Specification
Fire Test on Bunched Cable	IEC:60332-3 EN-50266-2					✓	As Per Specification	V	As Per Specification
Applicable Symbols		Ø		8 9		Ø	2 2	Ø Ø Ø Ø Ø ₩	

Flame Retardant - IEC 60332-1

Flame Retardant - IEC 60332-3

Low Emission of Dark Fumes - ASTM D 2843

Halogen Free - IEC 60754-1

Low-toxicity and Corrosivity of Emitted Gases-IEC 60754-2

DETAILLS OF FIRE TEST

Performance of cables in the event of fire

In order to determine the behavior of cables in case of fire, a group of standards has been developed to establish conditions of fire and to measure the behavior of the cable in such a situation, but it should be taken into account that those tests are used to assess the behavior of the cables under established, reproducible conditions and that they are not necessarily those of the actual installation. The current IEC regulation considers the following cases:

Flame retardant (Standard IEC 60332-1)

A flame in contact with the sheath of the cable for an established period of time should not lead to propagation. This prevents the cable from being the origin of a fire caused by a minor incident or an external source of heat coming in contact with the cable.

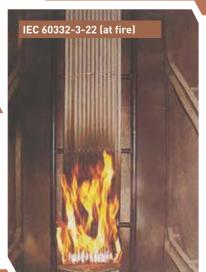
Flame spread (Standard IEC 60332-3-22)

A fire unrelated to the cable can affect a cable tray (worst case if it is in a vertical position allowing air circulation and creating the so-called chimney effect). If the decomposition temperature of the organic materials is reached, exothermic combustion (with the contribution of energy) of the cables takes place with the consequent propagation of the fire. The insulation and sheath compounds can be formulated to make this exothermic reaction limited (by the addition of inhibitors). To simulate this situation, the test consists of the application of a high-energy gas burner to a bunch of cables arranged to reproduce a vertical cable tray with forced air. Under those conditions, the fire provoked in the cables should extinguish within the time established in the standard. Based on the amount of combustible material per meter for a bunch exposed to the fire action, the IEC standard defines different categories.

Zero halogen and low smoke cable

If the cables are immersed in a situation of fire and depending on the constituent materials, they can release gases which are toxic for the health of people or corrosive affecting the correct operation and preservation of the electronic and computer components in the vicinity. They can also release smoke, which due to their opacity, makes it difficult to see the escape routes from the spaces affected.

To minimize those effects, Laser Cable has developed the low smoke zero halogen series which minimizes harmful halogenated emissions (IEC 60754-1 and 60754-2) and reduces substantially the opaque smoke emissions in accordance with IEC 61034-1&2.


Fire-resistant (Standard IEC 60331)

For circuit integrity and all those systems which need to maintain service under fire conditions, there is the IEC 60331 standard where the fire conditions to which the cables are tested & defined, and which have to continue in service even if the fire has destroyed the organic parts of same.

In the standard, the cable is exposed to a ribbon gas burner for a maximum time of 180 minutes or higher as specified in the standard and at a minimum temperature of 750°C or higher as specified in the standard, while being subjected every 5 minutes to shocks simulating debris fallout. We produce better fire-resistant cables to withstand higher temperatures than standard, giving an extra margin of safety in this field. During the test and at the end of it the cable has to maintain circuit integrity although all of its organic parts have disappeared.

LASER LT AERIAL BUNCHED CABLE

Aerial Bunched Cable (ABC) is a very novel concept for overhead Power distribution. ABC provides higher safety and reliability compared to bare conductor overhead distribution systems. The other advantages are lower power losses and system economy by reducing installation, maintenance and operation costs. This system is ideal for rural distribution and especially suitable in difficult terrains like hills, forests and coastal areas etc.

ABC is also considered a better choice for power distribution in densely populated areas where the laying of underground cables is either difficult or extremely expensive. This is attributed to narrow lanes and bylanes of congested urban areas. Needless to mention that ABC is a better choice due to the flexibility of re-routing demand, should there be any changes in an urban development plan. Bare Overhead Transmission lines are more prone to system failures causing immense loss and inconvenience to the consumers.

Aerial Bunched Cables systems for both HT & LT have been introduced across the globe to arrest such problems. It is basically a compromise between an Insulated Power Cable system and Bare Overhead Conductor.

There are 3 or 4 Power carrying conductors suitably insulated and laid around a bare or insulated Neutral/Earth conductor. This earth/neutral conductor carries the entire weight of the cable when hunged on Transmission poles/towers suitably.

The chances of faults are reduced to a great extent because the conductors are insulated. However, it lacks the Safety and Mechanical Strength of Underground Cables. The fact that ABC runs overhead and hence it is never subjected to the mechanical abuses that an underground cable undergoes.

ABC ensures good protection against ground and line faults ensuring system reliability and increased system efficiency compared to bare overhead lines. The problem of free clearance is also minimized. ABC system hinders tampering with power-line like hooking resulting in efficient Power utilization.

Advantages:

- Easier Installation particularly in Congested, Forests or Hilly areas. Saving in cost of Poles, Insulators, Cross-arms etc.
- · Human Safety in case of accidental contact.
- A water proof system, no corrosion.
- System reliability hence customer satisfaction.
- Reduced clearance.

Insulated Neutral:

In low voltage networks, in case of unbalanced load on the 3 phases, a current can flow in the neutral. This flow of current

causes a voltage to be present in the neutral. This voltage can reach dangerous levels even in 'Earthed' conditions. It is observed that the permissible voltage shift between neutral and earth can go up 100 volts! This surely establishes the need for an insulated neutral. Moreover, parallels can be drawn with the underground cables. Single insulation damage on the conductor will not necessarily trip the system unless an adjacent conductor also suffers insulation damage at the same point. Unlike in underground cables system, there are a lot of relative movements between the conductors leading to abrasion which more likely to damage the adjoining insulation if the neutral is not insulated.

LT Aerial Bunched Cables as per IS:14255-1995 Size and requirement of phase,

street lighting and messenger conductor

P	hase Conducto (Aluminium)	or	Street	t Lighting Cond (Aluminium)	ductor	Messenger Conductor (Aluminium Alloy)			
Nominal Area	Maximum Conductor D.C. Resistance at 20°C	Nominal Thickness of Insulation XLPE/PE	Nominal Area	Maximum Conductor D.C. Resistance at 20°C	Nominal Thickness of Insulation XLPE/PE	Nominal Area	Maximum D.C. Resistance at 20°C	Minimum Breaking Load	
sqmm	ohm/km	mm	sqmm	ohm/km	mm	sqmm	ohm/km	KN	
16	1.91	1.2	16	1.91	1.2	25	1.38	7	
25	1.20	1.2	16	1.91	1.2	25	1.38	7	
35	0.868	1.2	16	1.91	1.2	25	1.38	7	
50	0.641	1.5	16	1.91	1.2	35	0.986	9.8	
70	0.443	1.5	16	1.91	1.2	50	0.689	14	
95	0.320	1.5	16	1.91	1.2	70	0.492	19.7	

Composition and Designation of LT Aerial Bunched Cables

Designation	Complete Bu	unched Cables
	Approx. Overall Dia mm	Approx. Total Mass Kg/Km
3x16 + 25	19	250
3x16 + 16 + 25	19	310
3x25 + 25	22	330
3x25 + 16 + 25	22	390
3x35 + 25	24	430
3x35+16 + 25	24	490
3x50 + 35	32	580
3x50 + 16 + 35	32	640

The first part for phase conductor, middle for street lighting conductor and last for bare messenger conductor.

TECHNICAL PARTICULARS

LT Aerial Bunched Cable 1100 Volts (3.5 Core). Reference Standard : IS : 14255/95

			3 x 25	3 x 25	3 x 50	3 x 70	3 x 95
Sl.	Description		+ 1 x 16	+ 1 x 16	+ 1 x 25	+ 1 x 35	+ 1 x 50
No.	Description		+	+	+	+	+
			1 x 35	1 x 35	1 x 35	1 x 55	1 x 55
1.	Power/Neutral core:						
1.1	Conductors: a) Nom. Cross Sectional Area						
	i) Power cores	(Sg. mm)	25	35	50	70	95
	ii) Neutral core	(Sq. mm)	16	16	25	35	50
	b) Max. D.C. resistance of conductor	·					
	i) Power cores	(Ohm/Km)	1.200	0.868	0.641	0.443	0.320
	ii) Neutral core	(0hm/Km)	1.910	1.910	1.200	0.868	0.641
	c) Approx. diameter of conductor i) Power cores	(mm)	6.200	7.300	8.350	10.100	12.000
	ii) Neutral core	(mm)	5.100	5.100	6.200	7.300	8.350
		,,					
1.2	Insulation:						
	Minimum thickness:	()	0.000		4.05	4.05	4.05
	i) Power cores ii) Neutral core	(mm) (mm)	0.980 0.980	0.980 0.980	1.25 0.980	1.25 1.25	1.25 1.25
2.	Messenger Wire (Bare):	(111111)	0.700	0.700	0.700	1.23	1.23
۷.	Messenger wire (Dare).						
	i) Nom. Cross sectional area	(Sq. mm)	35	35	35	55	55
	ii) Approx. breaking load	(KN)	9.80	9.80	9.80	16.03	16.03
3.	Current ratings.						
	Continuous current carrying capacity of			400		400	
	cable in Air at Ambient temp 40°C	(Amps)	99	122	149	190	235
4.	Approx. weight	(Kg/Km)	580	665	810	1165	1430
5.	Number of cores : i) Power cores	(No.) : 3					
	ii) Neutral core	(No.) : 3					
	iii) Bare messenger	(No.) : 1					
6.	Derating factor :						
	Derating factors for variation						
	in air temp. Air Temp. (°C)	30	35	40	45	50	55
	Rating factor	1.12	1.06	1.00	0.94	0.88	0.83
7.1	Identification of Power cores :		By Providi	ng ridges o	n the insul	ation.	
7.2	Laying :			ver cores ar			
			suitably tv	visted arou	nd Alumini	um Alloy m	essenger.
8. 8.1	Details of the Power/Neutral core : Conductor :						
8.1	a) Material		Aluminiun	n to IS : 813	R0/84		
	b) Flexibility class as per IS:8130/84		Class-2		, - 1		
	c) Form of conductor		Compacte	d circular.			
8.2	Insulation:		Cross link	ad Dalvathy	dana ta IC.	7000(1)/00	
	a) Material b) Colour of insulation		Black	ed Polyethy	/terie to 15:	/ U70(I]/ 00	
9.	Details of the Messenger wire (Bare)						
'	a) Material		Aluminiun	n Alloy Wire	e to IS : 398	s(IV)	
	b) Form of conductor		Stranded	Circular / C	ompacted	Circular.	

TECHNICAL PARTICULARS

LT Aerial Bunched Cable 1100 Volts (4 Core). Reference Standard : IS : 14255/95

Sl.			3 x 25	3 x 25	3 x 50	3 x 70	3 x 95
οι. No.	Description		+ 1 x 25	+ 1 x 35	+ 1 x 50	+ 1 x 70	+ 1 x 95
NO.			+ 1 x 35	+ 1 x 35	+ 1 x 35	+ 1 x 55	+ 1 x 55
	Power/Neutral core:						
	Conductors:						
i	a) Nom. Cross Sectional Area i) Power cores	(Sq. mm)	25	35	50	70	95
	ii) Neutral core	(Sq. mm)	25	35	50	70	95
	b) Max. D.C. resistance of conductor	(-, (, ,					
	i) Power cores ii) Neutral core	(Ohm/Km) (Ohm/Km)	1.200 1.200	0.868 0.868	0.641 0.641	0.443 0.443	0.320 0.320
	c) Approx. diameter of conductor	(OIIII) KIII)	1.200	0.000	0.041	0.440	0.020
	i) Power cores	(mm)	6.200	7.300	8.350	10.100	12.000
	ii) Neutral core	(mm)	6.200	7.300	8.350	10.100	12.000
1.2 I	Insulation:						
	Minimum thickness:	()					
	i) Power cores ii) Neutral core	(mm) (mm)	0.980 0.980	0.980 0.980	1.25 0.980	1.25 1.25	1.25 1.25
2. I	Messenger Wire (Bare):	(11111)	0.700	0.700	0.700	1.20	1.20
	i) Nom. Cross sectional area	(Sq. mm)	35	35	35	55	55
	ii) Approx. breaking load	(Sq. 11111)	9.8	9.8	9.8	16.03	16.03
	Current ratings.						
	Continuous current carrying capacity of		00	400	1.10	400	005
	cable in Air at Ambient temp 40°C	(Amps)	99	122	149	190	235
	Approx. weight Number of cores :	(Kg/Km)	610	725	880	1270	1570
	i) Power cores	(No.) : 3					
	ii) Neutral core	(No.) : 1					
	iii) Bare messenger	(No.) : 1					
	Derating factor : Derating factors for variation						
i	in air temp.	0.0	0.5		,-		
	Air Temp. (°C) Rating factor	30 1.12	35 1.06	40 1.00	45 0.94	50 0.88	55 0.83
	Identification of Power cores :			ng ridges o			0.00
	Laying :		Three pow	ver cores ar	nd one neut	tral core sh	
	Data its of the Down All and I		suitably tv	visted arou	nd Alumini	um Alloy m	essenger.
	Details of the Power/Neutral core : Conductor :						
	a) Material			n to IS : 813	30/84		
	b) Flexibility class as per IS:8130/84 c) Form of conductor		Class-2	d circular.			
	Insulation :		Compacte	u Circular.			
	a) Material			ed Polyethy	ylene to IS:	7098(1)/88	
	b) Colour of insulation		Black				
	Details of the Messenger Wire (Bare) a) Material		Aluminiur	n Alloy Wire	e to IS : 398	(IV)	
	b) Form of conductor			Circular / C			

LASER HT AERIAL BUNCHED CABLES

In HT Aerial Bunched Cables the phase conductor consists of a stranded circular compacted Aluminium conductor, conductor screened with extruded semi-cone compound, Insulated with cross-linked polyethylene (XLPE), Insulation screened with extruded Semicon Compound followed by copper tape or plastic coated Aluminium tape, outer sheathed with PVC or black weather-resistant polyethylene and three such phase conductor are twisted around bare stranded circular compacted Aluminium Alloy Messenger conductor which takes all the mechanical stress and also serves as the earth cum neutral conductor.

Application Standard

IS: 10810-1984: Methods of Test for Cables

2. IS: 8130-1984: Conductors for Insulated Cables

3. IS: 6474-1984: Polyethylene Insulation of Cables

4. IS: 398 (Part-IV)-1979: Aluminium Alloy Conductors

5. IS: 14255-1995

6. IS: 7098-Part 1 & 2

11 KV(E) AERIAL BUNCHED CABLES GENERALLY TO IS: 7098/PART-2

(Three phase conductors around bare steel messenger)

	Phase Conductor		3x25	3x35	3x50	3x70	3x95	3x120	3x150
	Messenger Conductor		1x35	1x35	1x35	1x55	1x55	1x55	1x55
1.	Power/Neutral core:		IXOU	1200	1200	IXOO	1200	IXOU	IXOO
1.1	Conductors :								
1.	Trade Name					LASER			
2.	Rated Voltage	Kv				6.35x11			
3.	Reference Standard	'``		(Generally t		(Part-2)/8	35	
4.	PHASE CONDUCTOR				oner accy	.0 ,0 ,0,0	(, a, c 2), c		
4.1	Conductor								
i)	Material			Αlι	uminium t	o IS 8130/	'84. H4 Gr	ade	
ii)	Nominal cross-sectional area	Sgmm	25	35	50	70	95	120	150
iii)	 Flexibility class as per IS 8130	'	Class 2	Class 2	Class 2	Class 2	Class 2		Class 2
iv)	Form of Conductor				Stranded	Compacte	ed Circula	r	
v)	Max. DC resistance at 20°C	ohm/km	1.2	0.868	0.641	0.443	0.32	0.253	0.206
vi)	Approx conductor diameter	mm	6.2	7.3	8.4	10.1	12.0	13.2	14.6
4.2	Conductor Screen								
i)	 Material & Type			Е	xtruded s	emi-cond	ucting lay	er	
ii)	Min. thickness	mm	0.3	0.3	0.3	0.3	0.3	0.3	0.3
4.3	Insulation								
i)	Material			Cross-lin	ked Polye	thylene to	IS 7098 (Part-2]/85	
ii)	Nominal thickness	mm	3.6	3.6	3.6	3.6	3.6	3.6	3.6
4.4	Insulation screen (Non-Metallic)								
i)	Material & Type			E	Extruded s	emi-cond	luctor laye	er	
ii)	Min. Thickness of extruded layer	mm	0.3	0.3	0.3	0.3	0.3	0.3	0.3
4.5	Insulation screen (Metallic)								
i)	Material & Type			Coppe	r Tape apı	plied helic	ally with	overlap	
ii)	Approx. thickness of copper tape	mm	0.045	0.045	0.045	0.045	0.045	0.045	0.045
4.6	Sheath								
i)	Material & Tape			PVC T	ype ST2 to	IS 5831/8	84, Black	Colour	
ii)	Nom. thickness	mm	2.0	2.0	2.0	2.0	2.0	2.0	2.0
4.7	Approx. diameter of Power core	mm	20.4	21.5	22.6	24.3	26.2	27.4	28.8
5.	Bare Messenger								
i)	Material		Hig	h Tensile	galvanized	I steel str	and to IS 3	398 (Part 2	2)/96
ii)	Nom. Cross Sectional Area	Sqmm	35	35	35	55	55	55	55
iii)	Form of conductor				Stra	inded Circ	cular		
iv)	Approx. breaking load	kN	41	41	41	62	62	62	62
v)	Approx. messenger diameter	mm	7.8	7.8	7.8	9.5	9.5	9.5	9.5
6.	Number of Cores								
i)	Phase Conductor		3	3	3	3	3	3	3
ii)	Bare Messenger		1	1	1	1	1	1	1
7.	Identification of Phase conductor			By one	, two & th	ree ridges	on outer	sheath	
8.	Cable assembly		Р	hase cond	luctor laid	up aroun	d the bare	messeng	er
9.	Approx. weight of cable	kg/km	1590	1760	1940	2385	2490	3040	3370
10	Continuous current carrying capacity of cable when laid freely in air at 50°C ambient Air temp.	Amps	95	115	140	175	215	250	280
11	Short circuit rating for one second duration								
i)	Phase conductor	KA	2.4	3.3	4.7	6.6	9.0	11.3	14.2
ii)	Copper Screen	Amp	200	200	200	200	200	200	200

Note: Copper tape screen has been designed for earth fault current of 200 Amp. for 1 second duration. However if required it can be suitably redesigned to meet specific requirement if any.

11 KV(E) AERIAL BUNCHED CABLES GENERALLY TO IS: 7098/PART-2

(Three phase conductors around bare steel messenger)

	Phase Conductor		3x185	3x240	3x300
	Messenger Conductor		1x90	1x90	1x90
1.	Trade Name			LASER	
2.	Rated Voltage	Kv		6.35x11	
3.	Reference Standard		Gen	erally to IS 7098 (Part-2	2)/85
4.	PHASE CONDUCTOR				
4.1	Conductor				
i)	Material		Alumi	nium to IS 8130/84, H4	Grade
ii)	Nominal cross-sestional area	Sqmm	185	240	300
iii)	Flexibility class as per IS 8130		Class 2	Class 2	Class 2
iv)	Form of Conductor		Str	anded Compacted Circu	ılar
v)	Max. DC resistance at 20°C	ohm/km	0.164	0.125	0.1
vi)	Approx conductor diameter	mm	16.2	18.6	20.6
4.2	Conductor Screen				
i)	Material & Type		Extr	uded semi-conducting	layer
ii)	Min. thickness	mm	0.3	0.3	0.3
4.3	Insulation				
i)	Material		Cross-linked	d Polyethylene to IS 709	8 (Part-2)/85
ii)	Nominal thickness	mm	3.6	3.6	3.6
4.4	Insulation screen (Non-Metallic)				
i)	Material & Type		Extr	ruded semi-conductor l	ayer
ii)	Min. Thickness of extruded layer	mm	0.3	0.3	0.3
4.5	Insulation screen (Metallic)				
i)	Material & Type		Copper Ta	ape applied helically wit	th overlap
ii)	Approx. thickness of copper tape	mm	0.045	0.045	0.045
4.6	Sheath				
i)	Material & Tape		PVC Type	e ST2 to IS 5831/84, Blac	ck Colour
ii)	Nom. thickness	mm	2.2	2.2	2.2
4.7	Approx. diameter of Power core	mm	30.8	33.2	35.2
5.	Bare Messenger				
i)	Material		High Tensile galv	vanized steel strand to I	S 398 (Part 2)/96
ii)	Nom. Cross Sectional Area	Sqmm	90	90	90
iii)	Form of conductor			Stranded Circular	
iv)	Approx. breaking load	kN	103	103	103
v)	Approx. messenger diameter	mm	12.3	12.3	12.3
6.	Number of Cores				
i)	Phase Conductor		3	3	3
ii)	Bare Messenger		1	1	1
7.	Identification of Phase conductor		By one, tv	vo & three ridges on ou	ter sheath
8.	Cable assembly		Phase conduct	or laid up around the b	are messenger
9.	Approx. weight of cable	kg/km	4160	4820	5515
10	Continuous current carrying capacity of cable when laid freely in air at 50°C ambient Air temp.	Amps	325	400	445
11	Short circuit rating for one second duration				
i)	Phase conductor	KA	17.5	22.6	28.3
i)	Copper Screen	Amp	200	200	200

Note: Copper tape screen has been designed for earth fault current of 200 Amp. for 1 second duration. However if required it can be suitably redesigned to meet specific requirement if any.

 $\sqrt{95}$

LASER PVC FLEXIBLE CABLES

Laser flexible cables are available in single core and multi-core varieties. These flexible cables are made from E.C. grade copper having high purity (99.97%), fine wires are drawn and bunched together to make flexible conductor, PVC (Type-A) insulated, multi-core cables are sheathed with PVC (Type-ST1). These cables find their application in industrial wiring, wiring of panels & other electrical equipment. These cables are designed to withstand 3 kV for 5 minutes or Spark Voltage test as per IS. Governing specification IS 694-1990. Packing – 100 mtr / 200 mtr / 500 mtr or as per customers requirement.

SINGLE CORE FLEXIBLE COPPER CONDUCTOR PVC INSULATED UNSHEATHED INDUSTRIAL WIRING CABLES

Nominal Area of Conductor	Number/ Nominal Dia of Wire	Thickness of Insulation (Nom.)	Approx. Overall Diameter	Current carrying capacity for 2 Cables Single Phase AC or DC or 3-Phase AC (unenclosed)	Resistance max. per km. at 20°C	Reference Conductor Class of IS: 8130-1984
(sq.mm)	(No./mm)	(mm)	(mm)	(Amps)	(Ohms)	
0.5	16/0.2	0.6	2.2	4	39	Class 5
0.75	24/0.2	0.6	2.4	7	26	Class 5
1.0	32/0.2	0.6	2.6	12	19.5	Class 5
1.5	48/0.2	0.6	2.9	16	13.5	Class 5
2.5	80/0.2	0.7	3.5	22	7.98	Class 5
4.0	56/0.3	0.8	4.3	29	4.95	Class 5
6.0	84/0.3	0.8	5.0	37	3.300	Class 5
10.0	140/0.3	1.0	6.3	51	1.910	Class 5
16	126/0.4	1.0	7.3	68	1.210	Class 5
25	196/0.4	1.2	8.9	85	0.780	Class 5
35	276/0.4	1.2	10.1	112	0.554	Class 5
50	396/0.4	1.4	11.9	143	0.386	Class 5
70	360/0.5	1.4	13.6	214	0.272	Class 5
95	475/0.5	1.6	15.8	260	0.206	Class 5
120	608/0.5	1.6	17.5	305	0.161	Class 5
150	750/0.5	1.8	19.5	355	0.129	Class 5
185	925/0.5	2.0	21.5	415	0.1060	Class 5
240	1221/0.5	2.2	25.0	500	0.0801	Class 5
300	1527/0.5	2.4	27.0	580	0.0641	Class 5
400	2036/0.5	2.6	31.0	690	0.0486	Class 5
500	1710/0.6	2.8	34.5	780	0.0384	Class 5

TWO, THREE & FOUR CORE FLEXIBLE COPPER CONDUCTOR PVC SHEATHED CABLES

Nominal Area of Conductor	Number/ Nominal Dia of Wire	Thickness of Insulation (Nom.)	Thickness of Sheath (Nom.) (2 core)	Thickness of Sheath (Nom.) (3 core)	Thickness of Sheath (Nom.) (4 core)	Approx. Overall Diameter (2 core)	Approx. Overall Diameter (3 core)	Approx. Overall Diameter (4 core)	Current Carrying capacity for Single cable for Single ph AC or DC (unenclosed)	Current Carrying capacity for Single cable for Three ph AC [unenclosed]	Resistance Max. per km. at 20°C	Reference conductor class of IS:8130
(sq.mm)	(No./mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(Amps)	(Amps)	(Ohms)	
0.5	16/0.2	0.6	0.9	0.9	0.9	6.50	7.0	7.5	4	4	39	Class 5
0.75	24/0.2	0.6	0.9	0.9	0.9	7.00	7.5	8.0	7	6	26	Class 5
1.0	32/0.2	0.6	0.9	0.9	0.9	7.25	8.0	8.5	12.5	11	19.5	Class 5
1.5	48/0.2	0.6	0.9	0.9	1.0	7.75	8.5	9.5	15	14	13.5	Class 5
2.5	80/0.2	0.7	1.0	1.0	1.0	9.25	10.25	11.0	20	19	7.98	Class 5
4.0	56/0.3	0.8	1.0	1.0	1.0	10.75	11.75	12.75	27	26	4.95	Class 5
6.0	84/0.3	0.8	1.1	1.3	1.4	12.00	15.0	14.50	35	31	3.300	Class 5
10.0	140/0.3	1.0	1.1	1.4	1.4	14.75	17.5	19.0	46	42	1.910	Class 5
16	126/0.4	1.0	1.2	1.4	1.4	17.00	19.5	21.5	65	57	1.210	Class 5
25	196/0.4	1.2	1.3	1.5	1.6	20.5	23.5	25.5	75	72	0.780	Class 5
35	276/0.4	1.2	1.4	1.6	1.7	23.0	26.5	29.5	100	91	0.554	Class 5
50	396/0.4	1.4	1.6	2.0	2.0	28.0	32.5	35.0	130	120	0.386	Class 5
70	360/0.5	1.4	1.8	2.2	2.2	32.5	38.5	40.0	180	165	0.272	Class 5
95	475/0.5	1.6	1.9	2.4	2.4	38.5	45.0	46.5	220	200	0.206	Class 5
120	608/0.5	1.6	2.0	2.5	2.5	42.5	52.0	52.0	250	225	0.161	Class 5
150	750/0.5	1.8	2.2	2.6	2.6	45.0	52.0	54.0	275	250	0.129	Class 5

FIVE CORE FLEXIBLE COPPER CONDUCTOR PVC SHEATHED CABLES

Nominal area of conductor	Number/Nominal Dia of Wire	Thickness of Insulation (Nom.)	Thickness of Sheath (Nom.)	Approx. overall Diameter	Current carrying capacity for single cable for control circuits (unenclosed)	Resistance Max. per km. at 20°C	Reference conductor class of IS:8130
(Sq.mm)	(No/mm)	(mm)	(mm)	(mm)	(Amps)	(Ohms)	
0.5	16/0.2	0.6	0.9	8.50	4	39	Class 5
0.75	24/0.2	0.6	0.9	9.00	6	26	Class 5
1.0	32/0.2	0.6	1.0	9.75	11	19.5	Class 5
1.5	48/0.2	0.6	1.0	10.50	14	13.3	Class 5
2.5	80/0.2	0.7	1.0	12.00	19	7.98	Class 5
4.0	56/0.3	0.8	1.1	14.25	26	4.95	Class 5
6.0	84/0.3	0.8	1.2	16.00	31	3.300	Class 5
10.0	140/0.3	1.0	1.3	19.75	40	1.910	Class 5

LASER INSTRUMENTATION CABLE

Design Basics

Instrumentation cables are designed for the Transmission of Analog & Digital signals in instruments and Control Systems. Laser makes instrumentation cables are designed to maintain a high level of accuracy and sensitivity of the system without a drop in signal. It is designed to obtain Maximum rejection of Electromagnetic noise, minimal cross-talk and minimal

electromagnetically induced noise & common mode interference. Individual pairs or Triads are Colour coded for simplified identification and hook-up. Rugged armoured versions are recommended for use in Intrinsically Safe Systems. The Aluminium Myler Tape screening ensures exact data and pulse transmission, protecting the cable against electromagnetic disturbances and interferences. Fire performance options are designed to resist and withstand extreme fire conditions, with minimal emission of toxic gases. The lead sheath provides excellent resistance to chemical, oil, gas & radial water blocking.

Characteristics

- Signal protection between pairs.
- Good electromagnetic protection from external influences.
- Excellent Electrical, Thermal & Physical properties.
- Flame Retardant, Fire Retardant & Fire resistant Highly recommended in areas with High Explosion & Fire risks.
- Lead sheath provides radial water tightness and resistance to chemicals & hydrocarbons.
- Excellent mechanical protection during laying, installation & service.
- Extra pulling force.
- Option class-5 conductor provides extra flexibility.

Application

- Generally used for transmission of signals in control systems
- Typical applications include audio, intercom, control, energy measurements, alarm circuits.
- Suitable for use in wet and dry locations.
- Armoured cables are recommended for Outdoor & Direct Burial.
- Unarmoured cables are recommended for indoor use.

Category of Cables

Other than Conductor & Insulation variances Instrumentation cables are categorized broadly by the following :

Type-1 Unarmoured	Collectively Screened Individually & Collectively Screened	Collective Screen / Sheath Individual Screen / Collective Screen / Sheath
Type-2-Armoured	Collectively Screened Individually & Collectively Screened	Collective Screen / Sheath or Bedding / Armoured / Overall Sheath Individual Screen / Collective Screen / Sheath or Bedding / Armoured / Overall Sheath
Type-3-Lead Sheathed & Armoured	Collectively Screened Individually & Collectively Screened	Collective Screen / Sheath or Bedding / lead Sheath / Beeding / Armour & Armoured / Overall Sheath Individual Screen / Collective Screen / Sheath or Bedding / Lead Sheath/ Beeding / Amour / Overall Sheath

CLASS OF CONDUCTOR

Cond Sincin Co		No./Dia (mm) of wires	
Cond. Size in Sq. mm.	Solid (Class 1)	Stranded (Class2)	Flexible (Class 5)
0.5	1 / 0.8	7/0.3	16/0.2
0.75	1 / 0.98	7/ 0.37	24 / 0.2
1.0	1 / 1.13	7 / 0.43	32 / 0.2
1.5	1 / 1.38	7 / 0.53	30 / 0.25
2.5	1 / 1.78	7 /0.67	50 / 0.25

Electrical & Transmission Characteristics

Electrical & Transmission Characteristics	Refer Specification
Conductor resistance	IS : 1554 Part-l / BS : 5308 Part-1&2
Dielectric constant	IS : 5608 Part-l / BS : 5308 Part-1&2
Volume resistivity at 27°C	BS : 5608 Part-ll / BS : 5308 Part-1&2
Mutual capacitance	BS : 5608 Part-Ill / BS : 5308 Part-1&2
Co-axial capacitance	BS : 5308 Part-1&2
Characteristic impedence	IEC: 189 / BS: 5308 Part-1&2
Cross talk / attenuation	VDE 0815
Inductance	VDE 0816 / BS : 5308 Part-1&2

Constructional Features

Process	Features with Materials
Conductor	Electrolytic grade Annealed high cinductivity plain or tinned, solid or stranded or flexible copper wires.
Insulation	PVC / HRPVC / POLYETHYLENE (PE) / XLPE
Core & Pair Indentification	Colouring of Insulation, number printing, Ring marking or combination of above schemes.
Pairing	Two cores twisted to form apair with staggered lay lengths for minimizing cross talk.
Individual pair screening	Pairs screened with Aluminium Mylar Tape (100% coverage) having Tinned Copper drain wire under the screen longitudinally along the length, in contact with the Aluminium face.
Pair laying-up	Pair laid up in suitable condition
Binder tape (optional)	Mylar Tape
Collective screening	With Aluminium Mylar Tape (100% coverage) having Tinned Copper drain wire under the screen longitudinally along the length, in contact with the Aluminium face.
Sheath or Bedding	PVC/HR PVC/PE/FRLS/ZHLS
Lead Seath	Lead Alloy 'E' sheath
Bedding	PVC/HR PVC/FRLS/ZHLS
Armour	Single layer of round glavanized steel wires or flat galvanized steel strips.
Overall Sheath	PVC/HR PVC/FRLS/ZHLS

 $\sqrt{99}$

BASIC DATA FOR ALL ALUMINIUM CONDUCTORS (AAC) AS PER

IS 398 (PART - I) : 1996

Code Word		ium Area Mm)		ig & Wire neter	"Overall Dia (Mm)	"Mass (Approx)	"Resistance AT 20 Deg C	Breaking		ent Car Capacity	
	Nominal	Sectional	Cond	uctor	(Approx)"	(Kg /Km)"	(Ohms/Km) (Max)"	Load (Kn)"	"65	"75	"90
			No.	DIA (Mm)			(Max)	(Kii)	Deg. C Amps"	Deg. C Amps"	Deg. C Amps"
Gnat	25	26.85	7	2.21	6.63	74	1.096	4.52	107	152	NA
Ant	50	52.83	7	3.10	9.3	145	0.5525	8.25	180	225	NA
Wasp	100	106	7	4.39	13.17	290	0.2752	15.96	292	365	NA
19/3.18 Mm	150	150.9	19	3.18	15.9	415	0.1942	23.28	363	460	NA
Spider	240	237.6	19	3.99	19.95	654	0.1235	35.74	495	510	NA
Butterfly	300	322.7	19	4.65	23.25	888	0.09107	48.74	600	760	NA

BASIC DATA FOR ALL ALUMINIUM CONDUCTORS (AAC) AS PER

IS 398 (PART - I) : 1996

Code Word		um Area Mm)		ing & Wire meter	"Overall Dia (Mm)	"Mass (Approx)	"Resistance AT 20 Deg C	"Ultimate Breaking		ent Car Capacity	
	Nominal	Sectional	Con No.	ductor DIA (Mm)	(Approx)"	(Kg /Km)"	(Ohms/Km) (Max)"	Load (Kn)"	"65 Deg. C Amps"	"75 Deg. C Amps"	"90 Deg. C Amps"
Rose	20.89	21.12	7	1.96	5.88	58	1.362	385	100	124	Na
Lady Bird	42.33	42.8	7	2.79	8.37	117	0.6721	737	159	198	Na
Fly	62.86	63.55	7	3.40	10.2	174	0.4526	1051	207	260	Na
Blue Bottle	72.84	73.65	7	3.66	10.95	201	0.3936	1203	225	284	Na
Earwig	77.7	78.55	7	3.78	11.34	215	0.3662	1272	238	300	Na
Grass Hopper	83.13	84.05	7	3.91	11.73	230	0.3422	1356	250	312	Na
Clegg	94.56	95.6	7	4.17	12.51	261	0.3009	1523	270	335	Na
Caterpiller	183	186	19	3.53	17.65	511	0.1555	2985	420	530	Na
Chaffer	209.9	213.2	19	3.78	18.9	586	0.1356	3381	460	580	Na
Cockroach	261.5	265.8	19	4.22	21.1	730	0.1088	4144	530	670	Na
Moth	367.2	373.1	19	5.00	25	1025	0.0774	5695	654	828	Na
Locust	421.9	428.7	19	5.36	26.8	1176	0.0674	6516	711	904	Na
May Bug	473.6	486.1	37	4.09	28.63	1343	0.0598	7289	764	970	Na
Scorpion	518.4	529.8	37	4.27	29.89	1464	0.0548	7878	805	1030	Na
Iris	33.45	33.81	7	2.48	7.44	92	0.8506	582	121	162	NA
Pansy	42.02	42.49	7	2.78	8.34	116	0.677	730	159	198	Na

QUAD Jelly Filled Armoured Underground Screened Cable

	"Dia Over Inner Sheath ± 1.0 (in mm)"	12.9	16.9	17.8	22.2
Poly-Al & Inner Sheath	"Inner Sheath Thickness Nom. (in mm)"	2.00	2.00	2.00	2.00
Poly-Al & I	Inner Sheath Material	LDPE	LDPE	LDPE	LDPE
	"Poly-Al Tape Thickness (mm)"	0.300	0.300	0.300	0.300
of QUAD Jelly	"Dia Over Tape Over Laidup Approx (in mm)"	7.70	10.70	12.80	17.20
Laidup of QUAD with Jelly	"Laidup of "QUAD with 'Jelly	4 Quad Unit	6 Quad Unit	4 Quad Unit	6 Quad Unit
	"Insulation Core Dia. (mm)"	1.55	1.55	2.60	2.60
Insulation	Material Insulation Core Dia. QUAD with Tape Over Thickness (mm)" and Approx [in mm]" Approx [in mm]"	0.325	0.325	09.0	09.0
	Conductor Insulation "Nominal "Insulation "Laidup of "Dia Over Size Material Insulation Core Dia. QUAD with Tape Over (in mm)" Thickness (mm)" Jelly Laidup (in mm)" Approx	HDPE	HDPE	HDPE	HDPE
Conductor	"Conductor Size (in mm)"	0.90	0.90	1.40	1.40
Size		1 4QUAD X 0.90 0.90MM	2 6QUAD X 0.90MM	3 4QUAD X 1.40 1.40MM	4 6QUAD X 1.40 1.40MM
s/L		_	7	ო	4
	"Dia Over Inner Sheath ± 1.0 (in mm)"	12.9	16.9	17.8	22.2
Poly-Al & Inner Sheath	"Inner Sheath Thickness Nom.	2.00	2.00	2.00	2.00
Poly-Al & II	Inner Sheath Material	LDPE	LDPE	LDPE	LDPE
	"Poly-Al Tape Thickness (mm)"	0.300	0.300	0.300	0.300
Laidup of QUAD with Jelly	"Dia Over Tape Over Laidup Approx (in mm)"	7.70	10.70	4 Quad 12.80 Unit	17.20
Laidup with	Conductor Insulation "Nominal "Insulation "Laidup of "Dia Over Size Material Insulation Core Dia, QUAD with Tape Over (in mm)" Inckness (mm)" alotty Laidup (in mm)" Approx	4 Quad Unit	6 Quad Unit	4 Quad Unit	6 Quad Unit
	"Insulation Core Dia. (mm)"	1.55	1.55	2.60	2.60
Insulation	"Nominal "Insulation Insulation Core Dia. Thickness (mm)" (in mm)"	HDPE 0.325	0.325	09.0	09.0
	Insulation	HDPE	HDPE	HDPE	HDPE
Conductor	"Conductor Size (in mm)"	0.90	0.90	1.40	1.40
ပိ		Δ×	X D W	QUAD X .40MM	5QUAD X 1.40MM
Size		4QUAD X 0.90MM	6QUAD X 0.90MM	4QU, 1.40	6QU,
		1 4QUA 0.90N	2 6QUAD X 0.90MM	3 4QU, 1.40	4 6QU

± 1.0 (in mm)"	12.9	16.9	17.8	22.2		KV AC	KV AC	m (min.	
Nom. (in mm)"	2.00	2.00	2.00	2.00		ion:- 11 C	sion:- 15 C	a Os / Kı	
Material	LDPE	LDPE	LDPE	LDPE		r Extrus 17 KV D0	r Extrus 23 KV DO	00 mega	
Approx (mm)" (in mm)"	0.300	0.300	0.300	0.300		ıring Inner Extrusic (RMS) or 17 KV DC	iring Outer Extrusio (RMS) or 23 KV DC	ance 50	
Approx (in mm)"	7.70	10.70	12.80	17.20		Spark Test During Inner Extrusion:- 11 KV AC (RMS) or 17 KV DC	Spark Test During Outer Extrusion:- 15 KV AC (RMS) or 23 KV DC	n Resist	
, , , , , , , , , , , , , , , , , , ,	4 Quad Unit	6 Quad Unit	4 Quad Unit	6 Quad Unit	meters	Spark T	Spark T	Insulation Resistance 5000 mega Ωs / Km (min.)	
	1.55	1.55	2.60	2.60	Electrical Paremeters	X	6 KV		50v)
(in mm)"	0.325	0.325	09.0	09.0	Ele	sion :- 3	usion:-	ore & Co	50v to 4
	HDPE	HDPE	HDPE	HDPE		During Insulation Extru AC (RMS) or 4.5 KV DC	iata Extr KV DC	Each Co	ensity of
	0.90	0.90	1.40	1.40		Insulatic IS) or 4.5	Iring Intermediata Ext	Second	(Field inten
	1 4QUAD X 0.90MM	2 6QUAD X 0.90MM	3 4QUAD X 1.40MM	4 6QUAD X 1.40MM		Spark Test During Insulation Extrusion :- 3 KV AC (RMS) or 4.5 KV DC	Spark Test During Intermediata Extrusion:- 6 KV	HV Test - 2KV for 10 Second Each Core & Core to Screen with Armour & DST	Reduction Factor (Field intensity of 50v to 450v)
± 1.0 (in mm)"	12.9	16.9	17.8	22.2		Spark T	Spark Te	HV Test -	Reduction
Inckriess Siedti Nom. ± 1.0 (in mm)" (in mm)"	2.00	2.00	2.00	2.00					reen
Material	LDPE	LDPE	LDPE	LDPE	*		ı, Red , G	, Red , G	, Red , G
Lalaup Hillchiless Mater Approx in mm)" (mm)"	0.300	0.300	0.300	0.300	illow & Blac		e, Green	e, Yellow	e, Black
Approx (in mm)"	7.70	10.70	12.80	17.20	n, Green, Ye		4 - Whit	5 - Whit	6 - Whit
".	4 Quad Unit	6 Quad Unit	4 Quad Unit	6 Quad Unit	, Blue, Brow	or Quad :	Quad No 4 - White, Green, Red , Green	Quad No 5 - White, Yellow, Red , Green	Quad No 6 - White, Black, Red , Green
	1.55	1.55	2.60	2.60	rey, Orange	Color Coding for Quad			
(in mm)"	0.325	0.325	09.0	09.0	/hite, Red, G	Color	, Red , G	Red , Gr	Red , G
	HDPE	HDPE	HDPE	HDPE	Insulation Colour:- White, Red, Grey, Orange, Blue, Brown, Green, Yellow & Black		, Orange	e, Blue,	, Brown,
	0.90	0.90	1.40	1.40	Insulation		- White	2 - Whit	- White
	1 4QUAD X 0.90MM	2 6QUAD X 0.90MM	3 4QUAD X 1.40MM	4 6QUAD X 1.40MM			Quad No 1 - White, Orange, Red , Green	Quad No 2 - White, Blue, Red , Green	Quad No 3 - White, Brown, Red , Green
	_	2	က	4			ō		Ø

55 dB (min.) at 0.8 KHz, 5 KHz, 21 KHz & 150 KHz at 0.8KHz, 5KHz 21 KHz & 150 KHz 60.0 dB/Km Ind. (Min.) 70.8 dB/Km (RMS) (Min.) 04.1

Color Coding for Quad :	for Quad :	Spark Test During Insulation Extrusion :- 3 KV AC (RMS) or 4.5 KV DC	Spark Test During Inner Extrusion:- 11 KV AC (RMS) or 17 KV DC
Quad No 1 - White, Orange, Red , Green	Quad No 4 - White, Green, Red , Green	Spark Test During Intermediata Extrusion:- 6 KV	Spark Test During Outer Extrusion:- 15 KV AC (RMS) or 23 KV DC
Quad No 2 - White, Blue, Red , Green	Quad No 5 - White, Yellow, Red , Green	HV Test - 2KV for 10 Second Each Core & Core to Screen with Armour & DST	Insulation Resistance 5000 mega Ωs / Km (min.)
Quad No 3 - White, Brown, Red , Green	Quad No 6 - White, Black, Red , Green	Reduction Factor (Field intensity of 50v to 450v)	
		: U.TU (Max)	
	di Volta		

RECOMMENDATIONS FOR CURRENT RATINGS

Wire Strands Stay Wire

Stay Wires are galvanized steel wire strands that are used for sustaining mechanical load. Generally, they are made up of 6 wires stranded around 1 wire, twisting 7 wires together. A common use for stay wires are in the electricity industry, using the wire to stay power poles and tower structures.

Material:

The wire is cold drawn from steel and coated with zinc, the finished strand and the individual wires having uniform quality and the properties and product characteristics as specified in technical specification.

Construction: 7 Strand (6+1)

Specification: BS:183 or other customer specified

specifications

Size: 7/1.60 to 7/4.0mm

(amperes)

K: Rating factor as applicable

Grade	Tensile Grade	Min. Tensile Strength (N/mm2)
1	1770	1770
2	1570	1570
3	1100	1100
4	700	700
5	450	450

RECOMMENDATIONS FOR CURRENT RATINGS

Construction	Approximate		M	linimum bı	reaking loa	d of stran	d		Approx. mass
Number of wires/wire diameter	strand diameter	Grade 350	Grade 480	Grade 700	Grade 850	Grade 1000	Grade 1150	Grade 1300	
	mm	KN	KN	KN	KN	KN	KN	KN	Kg/1000m
3/1.80	3.9	2.65	3.66	-	-	-	-	-	3.9
3/2.65	5.7	5.80	7.95	-	-	-	-	-	5.7
3/3.25	7.0	8.70	11.95	-	-	-	-	-	7.0
3/4.00	8.6	13.20	18.10	-	-	-	-	-	8.6
4/1.80	4.4	3.55	4.90	-	-	-	-	-	4.4
4/2.65	6.4	7.70	10.60	-	-	-	-	-	6.4
4/3.25	7.9	11.60	15.90	-	-	-	-	-	7.9
4/4.00	9.7	17.60	24.10	35.20	-	-	-	-	9.7
5/1.50	4.1	3.10	4.24	6.18	-	-	-	-	4.1
5/1.80	4.9	4.45	6.10	8.90	-	-	-	-	4.9
5/2.65	7.2	9.65	13.25	19.30	-	-	-	-	7.2
5/3.25	8.8	14.50	19.90	29.00	-	-	-	-	8.8
5/4.00	10.8	22.00	30.15	43.95	-	1.70	-	2.24	10.8
7/0.56	1.7	0.6	0.83	1.20	-	2.75	1.98	3.60	1.7
7/0.71	2.1	0.97	1.33	1.94	-	3.95	3.19	5.15	2.1
7/0.85	2.6	1.39	1.90	2.80	-	4.45	4.57	5.80	2.6
7/0.90	2.7	1.55	2.14	3.10	-	5.50	5.12	7.15	2.7
7/1.00	3.0	1.92	2.64	3.85	-	8.55	6.32	11.15	3.0
7/1.25	3.8	3.01	4.10	6.00	-	10.75	9.88	14.00	3.8
7/1.40	4.2	3.75	5.17	7.54	9.16	11.00	12.35	14.30	4.2
7/RS+	4.3	3.85	5.28	7.70	9.35	14.10	12.65	18.30	4.3
7/1.6	4.8	4.90	6.75	9.85	11.95	17.80	16.20	23.20	4.8
7/1.8	5.4	6.23	8.55	12.45	-	22.00	20.50	38.60	5.4
7/2.00	6.0	7.70	10.55	15.40	-	30.60	25.30	39.80	6.0
7/2.36	7.1	10.70	14.70	21.40	-	38.60	35.20	50.20	7.1
7/2.65	8.0	13.50	18.50	27.00	-	49.50	44.40	64.30	8.0
7/3.00	9.0	17.30	23.75	34.65	-	54.55	56.90	70.90	9.0
7/3.15	9.5	19.10	26.20	38.20	-	58.05	62.75	75.50	9.5
7/3.25	9.8	20.30	27.85	40.65	-	73.25	66.80	95.20	9.8
7/3.65	11.0	25.60	35.15	51.25	-	88.00	84.20	114.0	11.0
7/4.00	12.0	30.90	42.20	61.60	-	99.30	101.0	129.0	12.0
7/4.25	12.8	34.75	47.65	69.50	-	124.0	114.0	161.3	12.8
7/4.75	14.0	43.40	59.45	86.80	-	14.92	142.7	19.40	14.0
19/1.00	5.0	5.22	7.16	10.45	-	23.32	17.16	30.31	5.0
19/1.25	6.3	8.16	11.19	16.32	-	29.25	26.81	38.02	6.3
19/1.40	7.0	10.24	14.04	20.47	-	38.20	33.64	49.66	7.0
19/1.60	8.0	13.37	18.34	26.75	- -	59.69	43.93	77.60	8.0
19/2.00	10.0	20.90	28.65	41.78	50.74	93.27	68.64	121.3	10.0
19/2.50	12.5 15.0	32.65	44.80	65.29	79.28	134.3	107.3	174.6	12.5
19/3.00		47.00	64.50	94.00	114.1	188.0	154.5	244.5	15.0
19/3.55	17.8	65.80	90.27		159.9	283.7	216.3	310.4	17.8
19/4.00	20.0	83.55	114.6	167.1	203.0	336.7	274.6	437.7	20.0
19/4.75	23.8	117.85	161.6	235.7	286.0		387.2		23.8

+: The construction of this strand consists of six wires of 1.40 mm diameter on a centre wire of 1.50 mm diameter. The diameter of the centre wire shall not be less than 0.08 mm or more than 0.12 mm greater than the diameter of the outer wire.

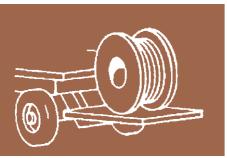
PACKING:

The galvanized steel stay strand is protected with paper/polythene/HDPE and outside wooden lagging on drum/reel.

ROLLING MILL

Nom.size	From of	From of Nom. Thick-	Min		Stri	Strip Armoured Cable	Cable			Round	Round Wire Armoured Cable	ed Cable				CURRENT	CURRENT RATINGS		
of	conductor	ness of XLPE Thickness	Thickness	Nom.	Min.	Approx	Al.	Cu.	Nom.	Min.	Approx	Al.	Cu.		Aluminium			Copper	
conductor as ver IS 8130/84	stranded		of PVC Outer Sheath	Dimension Thickness of GL flat of PVC strip outer sheath	Thickness of PVC outer sheath	Overall Diameter of cable	Approx Weight of cable	Approx Weight of cable	Dimension of Al. round wire	Thickness of PVC outer sheath	Overall diameter of cable	Approx Weight of cable	Approx Weight of cable	Burned Direct in Ground	Buried in Duct	In Air	Burned Direct in Ground	Buried in Duct	In Air
Sq.mm			mm	mm	mm	ww	kg/km	kg/km	ww	mm	ww	kg/km	kg/km	٧	4	4	A	A	۷
50	Circular	8.8	0.7	4×0.8	2.52	72.00	5355	6195	3.15	2.68	77.00	7920	8760	130	115	155	170	150	200
70	Circular	8.8	0.7	4×0.8	2.68	76.00	5980	7195	3.15	2.84	81.00	8655	9865	160	140	190	205	180	245
95	Circular	8.8	0.7	4×0.8	2.84	80.00	6520	8205	3.15	3.00	85.00	9325	11010	190	170	230	245	215	300
120	Circular	8.8	0.7	4×0.8	2.84	84.50	7230	9355	4.00	3.00	91.00	11415	13540	215	190	265	275	245	340
150	Circular	8.8	0.7	4×0.8	3.00	86.00	7760	10385	4.00	3.00	92.50	11960	14585	240	215	300	305	275	385
185	Circular	8.8	0.7	4×0.8	3.00	90.50	8540	11815	4.00	3.00	96.50	12945	16220	270	240	340	345	305	435
240	Circular	8.8	0.7	4×0.8	3.00	95.50	9555	13865	4.00	3.00	102.00	14260	18575	310	275	400	395	350	510
300	Circular	8.8	0.7	4×0.8	3.00	100.00	10555	15975	4.00	3.00	106.50	15450	20865	350	310	455	440	390	580
400	Circular	8.8	0.7	4×0.8	3.00	106.50	11905	18785	4.00	3.00	113.00	17075	23955	395	355	530	495	440	099

HOW TO HANDLE CABLE DRUMS


Do's

Cradle both drum flanges between forks

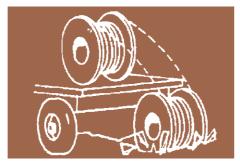
Drums can be hoisted with a shaft extending through both flanges

Lower drums from truck using hydraulic gate, hoist or fork lift.

LOWER CAREFULLY

Always load with flanges on edge

Dont's


Upended heavy drums will often arrive damaged. Refuse or receive subject to inspection forbidden damages

Do not lift by top flange. Cable or drum will be damaged

Never allow forks to touch cable surface or drum wrap

Never drop drums

RECOMMENDED CABLE HANDLING PRACTICES

Unloading and Moving of Drums

Cable Drum should never be shipped flat side down. Cable Drums that arrive in this manner should either be rejected or may be accepted after a thorough inspection.

Evidence of damage during shipment may be ascertained by inspecting the Cable's protective covering, if the damage is found, the same should be immediately reported to the Transporter. Cable Drums should never be dropped from the delivering vehicle to the ground. It should be ensured that the unloading equipment does not come in contact with the Cable surface or the protective wrap, if provided with a protective wrap. If the unloading of the Drum is accomplished by Crane, then it should be ensured that either a cradle supporting the Drum flanges or a shaft through the borehole is used. If Fork-lift is used it should be ensured that forks must lift the Drum at 90° to the flanges and the forks must be long enough to make complete lifting contact with both flanges. It must be ensured that under no circumstances should the forks come in contact with the cable surface or the protective wraps.

In the event of an inclined ramp is used for unloading, it should be ensured that the ramp is wide enough to accommodate both flanges completely. The stopping of the drum at the bottom shall be done by using the drum flanges and not the surface of the cable.

RECOMMENDED CABLE STORAGE PRACTICES

Storage & Storage Maintenance

Finished cables have no established shelf-life. Oxidation and discoloring can be caused to the conductor if exposed to moisture and atmospheric conditions. Uncovered/Unsheltered cable will degrade due to exposure to direct sunlight and/or the elements. This can be avoided by protecting the cables ensuring no degradation of insulation.

In general, cables meant for indoor application should be stored indoors. However, cable suitable for outdoor application may be stored outside but proper care should be taken that the cables are provided with end seals to prevent ingress of moisture/water into the cable.

The cable should be stored in a sheltered area and should be covered with Masonite or Dark film wrap to block sun rays.

Cables with sub-zero temperature marks may be stored in low ambient temperature areas. However, Cables without sub-zero marking should never be stored in low temperature areas.

Cable drums should never be stacked or stored on their sides and must remain in the upright position. Cable drums should be stored with a protective covering or lagging in place. If the length of the cable is cut from the drum, the cable end should be immediately sealed to prevent the ingress of moisture. If a part length is returned to storage, the drum's protective covering should be restored.

Drums should be stored on a flat, hard surface so that flanges do not sink into the earth. The weight of the reel and cable must be carried by the flanges at all times. Wooden drums should be stored off the ground to prevent rotating. Cable reels and lagging must not be stored for an extended period in direct contact with water or dampness. Timbers or metal supports must be placed under the drum flanges to provide elevated storage of the drums away from direct contact with water or damp soil.

Drums should be stored away from the construction equipment where falling or flying objects may cause damage to the cable.

The cable should be stored in areas where chemicals or petroleum will not be spilled or sprayed on the cable.

Cable should be stored in an area away from open fires in high-heat zone.

In the event drums are relocated, they should be handled as suggested in the "Recommended Drum handling practices" section and an inspection made on each drum during relocation.

If the cables are stored in a secure area and are not subjected to the adverse effects of weather, an annual inspection would be sufficient. Where the drums are exposed to weather, a bimonthly inspection should be carried out to observe any sign of deterioration.

If the drums are exposed in a non-secure area inspection at frequent intervals may be required depending upon the circumstances.

Records of a delivery date, manufacturer, installation date and any extenuating circumstances, along with all test reports should be kept on file.

Recommended Minimum Permissible Bending Radius

While installing the cables, the following minimum bending radius should be observed so that the Cable, particularly insulation is not damaged. Wherever possible larger bending radius should be maintained.

Dated Valtage (VV)	PVC & XLPE Cables			
Rated Voltage (KV)	Single Core	Multicore		
Upto 1.1 Kv	15 D	12 D		
Above 1.1 to 11 Kv	15 D	15 D		
22 Kv & 33 Kv	20 D	20 D		
Where D is the Outer Diameter of	cable			

PRE-INSTALLATION INSTRUCTIONS

Overview

To ensure reliability and safety during cable installation the following points may be checked prior to installation:

- The selected cable is appropriate for the desired application.
- No damage has occurred on the cable in transit or storage.
- Review all applicable codes and practices to verify that the selected cable is suitable for the application.
- Any existing cable damage is promptly identified precaution may be taken to ensure that no further damage occurs. This can be ensured by proper cable inspection, handling and storage.

Cable Inspection

Inspect every cable reel for damage before accepting the shipment. Extra caution may be taken if, A Drum is lying flat on its side.

Several drums are stacked together.

Other freight items are stacked on the Drum.

Nails have been driven into the drum flanges to secure shipping blocks.

The drum flange is damaged.

The cable covering is removed stained or damaged a drum has been dropped (likely a chance of hidden damage).

Cable Handling

All nails and staples should be removed from the drum flanges before moving a drum. Avoid all objects that could crush, gouge or impact the cable while moving. Cable should never be used as a means to move a drum.

Recommended bending radii should be observed while unreeling, use swivels to prevent twisting and overruns.

Overview

Generally, cables are subjected to more mechanical stress during installation than they ever experience in actual operation. Handling and pulling the cable as per manufacturers' recommendations is of prime importance.

The following are the 5 prime considerations in a cable installation:

- Ambient Temperature
- Equipment
- · Conduit fill
- Mechanical fit in raceway
- Physical limitations

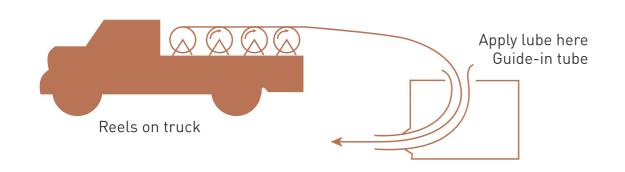
Installation Temperature

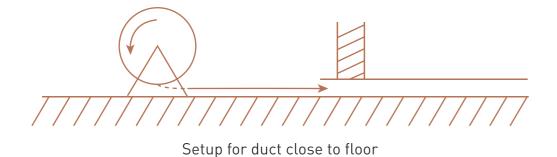
Low temperatures are causes for concern while installing cable in low ambient temperature areas. Cable installation should be avoided when the ambient temperature is less than the cold bend temperature rating of the cable plus 15° centigrade. Minimum installation temperature may not be marked for cables meant for normal temperature regions.

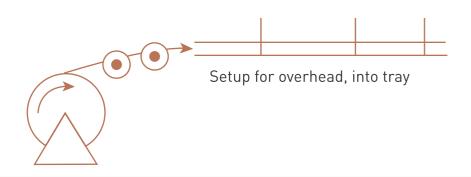
Prior to performing a low temperature (less than 10°F) cable installation, the cable should be stored for a minimum of 24 hours at a Temperature of 55°F or higher. The cable should be pulled more slowly and trained in place the same day it is removed from storage. Avoid impact, drop, kink, or bending cable sharply in low temperatures. It should also be ensured that the ambient temperature should be less than the maximum temperature limit of the cable.

Equipment

Proper usage of appropriate equipment is crucial for a successful cable installation. The details of the equipment needed for most installations are as below:

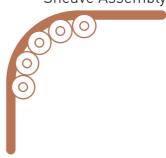

0-1/5/10 kip Dynamometer • Basket grip pullers • Cable cutter • Cable pulling lubricant Cable tray bend sheaves


- Cable tray rollers Capstan type puller Diameter tape Drum arbor Drum brakes Drum jacks Duct cleaning mandrels Duct testing mandrels Electric safety blankets and clamps
- Extension cords and GFCI protection Fishtape or string blower / vacuum flood lamp Gang rollers, with a minimum 4 ft effective radius Gloves Guidein flexible tubing (elephant trunks)
- Hand winches (come-a-long) Hipot tester Lint-free rags Make-up air blowers and hose
- Manhole cover hooks Manhole edge sheaves Measuring tapes Personal Safety clothings
- Plywood sheets Portable Electric Generator Pre-lubing devices Pulling ropes Pump, diaphragm Radios or Telephones Several wire rope slings of various lengths Shackles / Clevis Short ropes for temperature tie offs Silicone caulking (to seal cable ends) Swivels Warning flags, signs



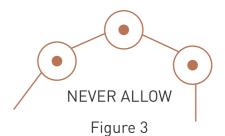
CABLE INSTALLATION FEED-IN SETUPS

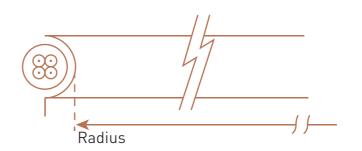
The following diagrams illustrate various cable feed-in setups



CABLE INSTALLATION FEED-IN SETUPS (CONTD.)

Single Sheave may be used only for GUIDING cables. Arrange multiple blocks to hold bending radii whenever a cable is deflected


Sheave Assembly



For pulling around bends, use conveyor sheave assemblies of the appropriate radius series

The pulleys must be positioned to ensure that the effective curvature is smooth and deflected evenly at each pulley. Never allow a polygon curvature to occur (Figure 3).

The fit of a pulley around the cable is also important when pulling heavy weights (i.e. pulleys at the top of a vertical drop).

Remember to use the radius of the surface over which the cable is bent, not the outside flange diameter of the pulley. A '10 inch' cable sheave typically has an inside (bending) radius of 3 inches.

DC HIGH-POTENTIAL (HI-POT) TEST OF CABLE (APPLICABLE FOR 3.3 KV AND ABOVE)

Overview

This procedure is intended to provide general guidelines for high-potential DC testing of power cables. All tests made after cable installation and during the guarantee period shall be made in accordance with applicable specifications. All safety precautions must be observed during testing at high voltage.

Read and follow the operator's manual for the particular test set being used.

Test Equipment– DC test equipment is available in a wide range of voltage grades. Accessories like barriers, rubber gloves and non-conducting rubber hats must be used from a safety point of view. An appropriate safety officer may be consulted.

Test Procedure– As guided in IS 1255. The details are as below:

The following must be ensured before performing any DC high-potential test:

All equipment must be disconnected from the cable system i.e. Transformers, Circuit Breakers, motors etc. This will cause damage to such equipment and will prevent test interruptions due to flashovers and/or trip-outs resulting from excessive leakage current.

Maintain adequate clearance (approx. 75 cm) between the circuit test ends and any grounded objects and to the other equipment not under test. All circuit conductors not under test should be grounded with cable shields, including nearby equipment. Termination kit manufacturers should be consulted for maximum test voltage recommendations with time limits.

Follow IS:1255 guidelines.

The DC test voltage may be applied either continuously or in predetermined steps to the maximum value as per applicable specifications.

Continuous method– Test voltage is to be applied at an approx. increment rate of 1 Kv per sec or 75% of the rated current output of the equipment, whichever is less. Some equipment may take longer time to reach the maximum test voltage because of the amount of charging current.

Step Method– Test voltage is to be applied slowly in 5 to 7 increments of equal value to the maximum specified limit. A sufficient time-gap is to be maintained at each step to allow the leakage current to stabilize.

Hi-pot testing procedure– Unless circuits of high capacitance are involved, this requires only a few seconds. Record leakage current at each step.

Test voltage at the prescribed value and stipulated time as per specification need to be applied. The following times are normally considered sufficient. At the end of the test period, set the voltage control to zero, allow the residual voltage on the circuit to decay and then ground the conductor just tested.

Caution– It should be appreciated that DC charges on cables can build up to potentially dangerous levels if grounds are removed too quickly. Maintain solid grounds after the test on the cable for at least 4 times the duration of the test. On longer cable lengths it may be necessary to increase the grounding time.

Acceptance testing– After installation and before the cable is placed in regular service, the specified test voltage shall be applied for 5 minutes.

Proof testing – At any time during the guarantee, the cable circuit may be removed from service and tested at a reduced voltage (1.5 times the rated voltage) for 5 minutes.

Record the leakage current at one-minute intervals for the duration of the test time involved

Testing problems

Extra leakage current:

Failure to guard against corona

Failure to clean the insulation surface

Failure to keep cable ends dry

Failure to provide adequate clearance to ground

Improper shield termination

Erratic readings:

Fluctuating voltage to test set

Improper test leads

Environmental influences:

High relative humidity

Dampness, dew, fog

Wind, snow

Results vs. cable life

To date, there is no established evidence for correlating DC test results and cable life expectancy.

Note:

Frequent high-voltage tests on cable installation should be avoided. This test is to be done only when absolutely necessary.

Acceptance Test:

This test is performed to detect any defects in cable insulation and termination arising out of poor workmanship or mechanical damage. DC testing is not expected to reveal deterioration due to ageing in service. This proof test confirms the integrity of the insulation and accessories before the cable is put into service. Testing recommendations during installation at the DC test voltage specified in the table below, applied for 5 minutes before commissioning.

Maintenance test after installation:

After the cable is completely installed and placed in service, a DC proof test may be done any time within the first five years at a voltage 1.5 times the rated voltage applied for 5 minutes. After this period DC testing is not recommended. Test voltage here should be determined depending upon the condition of cable joints, terminations

etc. or if repaired in some place, test voltage will not be less than the rated voltage.

Rated Voltage (Uo / U) KV	Test Voltage KV
1.9 / 3.3	5
3.3 / 3.3	9
3.8 / 6.6	10.5
6.6 / 6.6	18
6.35 / 11	18
11 / 11	30
12.7/22	37.5
19/33	60

Note:

DC test voltage is applied to find out gross problems such as improperly installed accessories or mechanical damage. This is not expected to reveal any deterioration due to ageing in service. There are some evidence that DC testing of aged cross-linked polyethylene cable can lead to early cable failures.

CONTACT US

ISO 9001:2015 CERTIFIED COMPANY

CORPORATE OFFICE

LASER POWER AND INFRA PVT. LTD.

Advents Infinity @5, BN Block, 19th Floor, North Wing, Sector V, Salt Lake, Kolkata 700091

Email: info@laserpowerinfra.com | Mobile: +91 62922 74159

GURUGRAM OFFICE

501, 5th Floor, Tower-B, Millennium Plaza, Sector-27, Gurugram, Haryana, India

FACTORY ADDRESS:

UNIT- 1 PP1: NH- 6, Polypark, Dhulagarg, Howrah - 711302, West Bengal, India UNIT- 2 PP2: NH- 6, Polypark, Dhulagarg, Howrah - 711302, West Bengal, India UNIT- 3 Plot- F1, Sector- F, Vidyasagar Industrial Park, Vill - Jafala, PO. - Jakpur, Kharagpur WBIDC- 721301, West Bengal, India

Website: www.laserpowerinfra.com